在钙钛矿光电探测器中产生的光电流(I pH)的频率响应是成像或电信应用中的关键问题,尽管文献中讨论了它。目前的工作是在第一次获得MAPBI 3(MA:甲基氨基)perovskite perovskite polycrystalline薄膜上产生的I pH的完整表达。条件电路用于在平方调节激发激励下的1 V处提取I pH,其灵敏度小于1 nW,线性动态范围LDR> 200 dB;它允许准确确定I pH的模块以及相位,这通常在光电探测器系统中不报告。频域分析表明,I pH可以通过位于低(10 kHz)和高(39-250 kHz)切割频率的两个分数极点进行建模。最佳的几何参数和激发功能是针对更广泛的响应发现的,从而在最高250 kHz的速率上获得了最佳设备,并在高达100 kHz的方形光波的繁殖中繁殖。这些结果代表了对MAPBI 3(或其他钙钛矿材料)进行电气分析的重要策略,以设计后电子阶段,优化设备的优化并确定其功绩。
C. Rendo-Erief 1,I。South 1.2,S.J。问题1,T.S。 Ripoles 1,J。P。Martin-Saturnaly 2,问题1,T.S。Ripoles 1,J。P。Martin-Saturnaly 2,
图2。MAPBI 3谷物生长。 (a)MAPBI 3成核过程来自半径A的基板表面上的前体,大于临界半径。 晶粒在底物表面生长,生长在损伤后终止。 (b),(c)和(d)MAPBI 3膜在100 O C,130 O C和165 O C退火时的光学显微镜图像(B,C,C,D = 90 µm)。 The dendritic morphology turns spherulitic upon increasing the annealing temperatures, (e) Optical microscope image of MAPbI 3 (scale = 40 μm) crystals spin- coated from 3 M DMSO-based precursors and annealed at 165 o C, (f) SEM Images highlighting the surface morphology of MAPbI 3 crystal film spin-coated over glass from 2M precursor (scale = 100 μm), (g)通过SEM(比例=2μm),(H)Mapbi 3膜的横截面SEM在膜中的三重连接晶界中的变焦,该膜胶片在玻璃上旋转(比例= 1 µm)。MAPBI 3谷物生长。(a)MAPBI 3成核过程来自半径A的基板表面上的前体,大于临界半径。晶粒在底物表面生长,生长在损伤后终止。(b),(c)和(d)MAPBI 3膜在100 O C,130 O C和165 O C退火时的光学显微镜图像(B,C,C,D = 90 µm)。The dendritic morphology turns spherulitic upon increasing the annealing temperatures, (e) Optical microscope image of MAPbI 3 (scale = 40 μm) crystals spin- coated from 3 M DMSO-based precursors and annealed at 165 o C, (f) SEM Images highlighting the surface morphology of MAPbI 3 crystal film spin-coated over glass from 2M precursor (scale = 100 μm), (g)通过SEM(比例=2μm),(H)Mapbi 3膜的横截面SEM在膜中的三重连接晶界中的变焦,该膜胶片在玻璃上旋转(比例= 1 µm)。
为了对溶液中的卤化物钙钛矿加工产生详细的理解,在Mapbi 3对Mapbi 3的自旋涂层和插槽-DIE涂层中进行了不同的蒸发速率,以不同的蒸发速率进行了研究。基于光学参数的时间演变,发现两种处理方法最初都形成了溶剂 - 复合结构,然后是钙钛矿结晶。后者分为两个阶段进行自旋涂层,而对于插槽涂层,仅发生一个钙钛矿结晶阶段。对于两种处理方法,发现随着蒸发速率的增加,溶剂复合物结构的结晶动力学和钙钛矿结晶在相对时间尺度上保持恒定,而第二次钙钛矿结晶的持续时间在自旋涂层中增加。第二个钙钛矿结晶由于溶剂 - 复合相形态的差异而受到限制,钙钛矿形成了。工作强调了确切的前体状态特性对钙钛矿形成的重要性。进一步证明,多模式光学原位光谱的详细分析允许对卤化物钙钛矿溶液处理过程中发生的结晶过程进行基本了解,而与特定的处理方法无关。
在许多应用中高质量晶状膜提供高质量薄膜的能源合成。在这里,我们通过利用扩散聚集过程来设计一种无毒溶剂方法来生产高度结晶的Mapbi 3钙钛矿。异丙醇溶液基于三碘化甲基三碘二碘(MAPBI 3),在这种情况下,晶体生长起始开始于远离平衡的不稳定悬浮液开始,随后的结晶驱动于溶解度参数。通过扫描透射电子显微镜(Stem)监测晶体的形成,观察到随着时间的流逝而演变成具有高晶体纯度的大晶粒,生长的小结晶中心。茎模式下的能量色散X射线光谱(EDS)显示新形成的晶粒中有富含Pb的核心壳结构。纳米光束电子衍射(NED)扫描定义的PBI 2晶体在PB富壳中具有新形成的晶粒中的单晶Mapbi 3核心。一周搅拌后,相同的聚集悬浮液仅表现出仅具有单晶体MAPBI 3结构的晶粒。NED分析显示了从核心壳结构到单晶晶粒的动力学缓慢过渡。这项研究对可能导致亚化学计量晶界影响的因素提出了有影响力的见解,从而影响太阳能电池性能。另外,已经提出了钙钛矿晶粒的结构,形态和光学特性。随后通过在低空烤箱中蒸发溶剂来制备高度结晶颗粒的粉末。薄膜Mapbi 3太阳能电池是通过溶解粉末并将其涂在经典制造路线中制造的。MAPBI 3太阳能电池的冠军效率为20%(19.9%),平均效率约为17%,而滞后效应低。在这里突出了制造无毒溶剂的材料结构的策略。这里设计的单晶增长既可以为材料的货架存储以及设备的更灵活的制造。该过程可能会扩展到其他字段,中间多孔框架和大型表面积将对电池或超级电容器材料有益。
光电探测器是指能够将入射光转换为电信号的光电子器件,是环境监测、消防和安全、光通信、太空探索和视频成像等多个领域的重要功能元件[1,2]。光电探测器采用了不同类型的半导体材料,例如GaN、InGaAs、Si、ZnO、碳纳米管、共轭聚合物和量子点[3]。基于这些材料的器件需要复杂而昂贵的制造成本和机械刚性。在过去的十年中,金属卤化物钙钛矿材料因其在光伏和光电子器件中的广泛应用而引起了研究人员的极大兴趣[4]。由于其突出的高性能、低成本和溶液可加工性,这类材料已经成为未来大量光伏和光电子器件的潜在候选材料[5]。在众多可用的金属卤化物中,甲基铵碘化铅 (MAPbI 3 ) 已被广泛研究用于光伏和光传感应用 [ 6 ]。事实上,钙钛矿材料在光伏器件中已经实现了显著的效率,但这些太阳能电池