我们介绍了一种基于量子虚时间演化 (QITE) 高效解决 MaxCut 问题的方法。我们采用线性 Ansatz 进行幺正更新和不涉及纠缠的初始状态,以及在给定图和切除两个边的子图之间插值的虚时间相关哈密顿量。我们将该方法应用于数千个随机选择的图,最多有 50 个顶点。我们表明,对于所有考虑的图,我们的算法表现出 93% 及以上的性能,收敛到 MaxCut 问题的最大解。我们的结果与经典算法(例如贪婪算法和 Goemans-Williamson 算法)的性能相比毫不逊色。我们还讨论了 QITE 算法的最终状态与基态的重叠作为性能指标,这是其他经典算法所不具备的量子特征。
• 本文件是根据 OSHA 危害通识标准 29 DGR 1910.1200 的 MSDS 要求编写的。 • OSHA 分类:无害 • 加州 65 号提案(1986 年安全饮用水和有毒物质强制执行法案):该州已知会导致癌症的物质:Eastman 未知) • 加州 65 号提案(1986 年安全饮用水和有毒物质强制执行法案):该州已知会导致不良生殖影响的物质:Eastman 未知) • 本文件是根据 WHMIS(加拿大)受控产品法规的 MSDS 要求编写的。 • WHNIS(加拿大)状态:不受控 • WHMIS(加拿大)危害分类:不适用 • 致癌性分类(存在的成分为 0.1% 或更多):
摘要 — 寻找图的最大割点 (MAXCUT) 是一个经典的优化问题,它推动了并行算法的开发。虽然 MAXCUT 的近似算法提供了有吸引力的理论保证并展示了令人信服的经验性能,但这种近似方法可能会将主要的计算成本转移到随机采样操作上。神经形态计算利用神经系统的组织原理来启发新的并行计算架构,提供了一种可能的解决方案。自然大脑的一个普遍特征是随机性:生物神经网络的各个元素都具有内在的随机性,这是实现其独特计算能力的资源。通过设计利用与自然大脑类似的随机性的电路和算法,我们假设微电子设备中的内在随机性可以转化为神经形态架构的宝贵组成部分,从而实现更高效的计算。在这里,我们展示了神经形态电路,它将一组随机设备的随机行为转化为有用的相关性,从而为 MAXCUT 提供随机解决方案。我们表明,与软件求解器相比,这些电路的性能更佳,并认为这种神经形态硬件实现提供了扩展优势的途径。这项工作展示了将神经形态原理与内在随机性相结合作为新计算架构的计算资源的实用性。