Loading...
机构名称:
¥ 1.0

摘要 — 寻找图的最大割点 (MAXCUT) 是一个经典的优化问题,它推动了并行算法的开发。虽然 MAXCUT 的近似算法提供了有吸引力的理论保证并展示了令人信服的经验性能,但这种近似方法可能会将主要的计算成本转移到随机采样操作上。神经形态计算利用神经系统的组织原理来启发新的并行计算架构,提供了一种可能的解决方案。自然大脑的一个普遍特征是随机性:生物神经网络的各个元素都具有内在的随机性,这是实现其独特计算能力的资源。通过设计利用与自然大脑类似的随机性的电路和算法,我们假设微电子设备中的内在随机性可以转化为神经形态架构的宝贵组成部分,从而实现更高效的计算。在这里,我们展示了神经形态电路,它将一组随机设备的随机行为转化为有用的相关性,从而为 MAXCUT 提供随机解决方案。我们表明,与软件求解器相比,这些电路的性能更佳,并认为这种神经形态硬件实现提供了扩展优势的途径。这项工作展示了将神经形态原理与内在随机性相结合作为新计算架构的计算资源的实用性。

用于解决 MAXCUT 的随机神经形态电路

用于解决 MAXCUT 的随机神经形态电路PDF文件第1页

用于解决 MAXCUT 的随机神经形态电路PDF文件第2页

用于解决 MAXCUT 的随机神经形态电路PDF文件第3页

用于解决 MAXCUT 的随机神经形态电路PDF文件第4页

用于解决 MAXCUT 的随机神经形态电路PDF文件第5页

相关文件推荐

2023 年
¥4.0