•航空系统分析•MDAO•建模和模拟•投资组合分析•推进集成•风险 /安全分析•结构和材料•运输系统建模•不确定性量化•空间任务分析•运动分析•功能评估•能力评估•COMM。和遥测 /安全性•成本分析•决策分析•飞行力学•居住 /人类系统。Integration • Instrument Design & Analysis • Integrated Architectures • Mission Analysis • Modeling & Simulation • Strategic Analysis • Supportability • Systems Engineering • Uncertainty Quantification • Vehicle Sizing • Vehicle Analysis • Advanced Concepts • Aerodynamics • Aeroheating • Astrodynamics • Control Systems • Cost Analysis • Entry, Descent & Landing • Flight Dynamics • Flight Mechanics • Load Estimation • Modeling & Simulation • Propulsion • Risk Management & Analysis • Structures & Materials • Uncertainty量化•车辆尺寸
北约科学技术组织的应用车辆技术小组正在其机械系统、结构和材料重点下组织一次研究专家会议,主题为“军用车辆设计中的新材料和制造”。会议向北约国家以及增强机会伙伴 (EOP) 国家澳大利亚和瑞典开放,并被归类为“北约非机密,向澳大利亚、日本和瑞典开放”。会议将于 2024 年 10 月 16 日至 18 日在德国科布伦茨举行,与第 54 届 AVT 小组业务会议同时举行。研究专家会议是一个为期三天的中型活动,最多可容纳 100 名参与者,旨在促进专家和专家就重要科学或应用主题交流最新知识。会议将重点关注材料、制造和设计的交叉和集成;包括三位主旨发言人和 15 场技术演讲。每一天都将以热烈的重点讨论结束。程序委员会负责选择和邀请演讲者。鼓励观察员参加,但不发表论文。研究专家会议将产生 STO 报告(会议论文集)。程序委员会将根据技术内容和对该领域的影响选择最佳论文。会议最后一天将向作者颁发详细说明获奖情况的证书。高质量的论文可能会发表在北约 STO 技术期刊上。演讲时间为 30 分钟。请计划 20 分钟的简报,然后是 10 分钟的提问和讨论。主旨演讲者为:Alexander L Carrere 先生,美国波音研究与技术公司高级 MDAO 工程师 Alexander Carrere 是波音研究与技术公司 (BR&T) 的高级多学科设计分析和优化 (MDAO) 工程师,专注于开发、定制、
摘要可重复使用的发射系统在过去十年中彻底改变了太空运输行业。Falcon 9(SpaceX)的既定成功对许多私人公司和太空机构发挥了关键作用,促使他们在重复使用的发射车辆(RLV)上投资一致的资源(RLV),以重新构成主要阶段和上层阶段。在这项研究中,引入了一种基于最佳分期,结构索引曲线和火箭发动机特征的可重复使用的主阶段大小的新型概念前方法。该方法可以用于开发最初的猜测和界限,以进一步详细的RLV尺寸。它将基于速度预算的最佳分阶段的传统启动器设计方法扩展到具有恢复硬件的可重复使用的轨迹。这用于对设计替代方案在性能和参数成本指标方面的适用性进行概念分析,并包括基于VTVL和VTHL火箭概念的不同恢复解决方案。该研究还探讨了使用氢,甲烷,丙烷,氨和煤油作为燃料的差异。结果表明,对恢复推进剂进行调整的重要性以及对与最低最低限度质量解决方案不同成本最佳设计的预期重用数量的敏感性。尽管它提供了可以初始化RLV概念设计的快速结果,但由于难以从概念上对其他设计参数进行建模及其对车辆轨迹和干质量的影响,因此其有效性受到限制。因此,它的结果必须在随后的设计阶段仔细使用,尽管它可以用作初始化策略。尤其是,速度分析学科可以为延迟的轨迹优化产生初始猜测,以及用于多学科设计分析和优化(MDAO)评估的最佳分阶性程序。进行的交易将进一步补充有关结构设计和高档MDAO的未来详细研究。
致谢 这篇博士论文是一段不可思议的旅程,如果没有许多人的帮助和支持,我不可能完成这篇论文: 感谢 Nathalie Bartoli 从一开始就毫无疑问地接受担任我的联合导师,完成这篇非传统的博士论文。您在整个研究过程中的持续指导以及对您稿件的透彻评论是最终成果的关键。 感谢 Yves Gourinat 同意担任我的联合导师,并在 2012 年重新启动我的博士项目。您把想法变成了现实。此外,增加认证方面非常到位。感谢 Darold Cummings、Eric Feron 教授、Marcel Mongeau 教授、Giulio Romeo 教授和 Tim Takahashi 教授。我真的很荣幸能有你们作为我的博士论文评委。感谢 Judicaël Bedouet 在 GAMME 认证约束模块开发中提供的重要帮助以及您对沿着真实航线的飞行轨迹的计算;感谢 Sébastien Defoort 在 FAST 开发和稿件审阅过程中提供的高效且值得赞赏的合作;感谢 Rémi Lafage 对 FAST 进行全面修订,使其符合计算机科学标准;感谢 Alessandro Sgueglia、Julien Mariné、Antony Delclos、Antoine Dompnier 和 Li Yan 在 FAST 和扩展 MDAO 流程模块方面所做的具体工作;感谢 Sylvain Dubreuil 在敏感性分析方面的贡献;感谢 Thierry Lefebvre 分享在尝试开发飞机过程中的早期斗争
(PM 2.5)。航空的总空气质量和气候影响(包括燃料生命周期排放)估计为每吨喷气燃料燃烧的1600美元(仅是In-ight CO 2排放的影响的2倍),其中32%是由于降级的空气质量(请参阅ESI,S1†部分)。要全面评估由于新技术或政策而引起的环境影响,需要量化航空的空气质量和气候影响(包括燃料寿命释放和非CO 2气候烟草)。先前的研究已量化或提出的解决方案,以解决航空环境影响的一个或两个方面。较旧的评估,例如9,10,仅涵盖CO 2引起的气候影响。Lee等人最近对航空环境影响的元评估。4估计由于航空CO 2和非CO 2来源引起的气候影响,但没有量化航空的空气污染影响(约1/3的环境影响)。最近评估了能源和CO 2途径以减少航空气候影响13 - 15的许多研究也忽略了空气污染的影响。少数提出解决航空环境影响解决方案的研究狭窄地集中在挑战的单一方面(例如,,可持续航空燃料(SAF),以解决航空公司2;解决问题的操作解决方案; 16个解决空气质量的技术解决方案12)。迄今为止尚无评估,该解决方案同时应对气候(包括生命周期排放和非CO 2影响)以及在一项一致的研究中对航空的空气质量影响。同时评估的评估需要一致地捕获各种缓解措施之间的相互依赖性和耦合,从而将航空的气候和空气质量影响最小化。这样的评估对于评估将航空环境影响减少到接近零的可行性至关重要。在本文中,我们确定并评估具有接近零环境影响的航空运输系统(占航空的气候和空气质量影响)。我们的系统具有净零气候影响,而相对于当今的空气质量影响降低了95%(或更高)。我们量化了生产替代燃料的生命周期排放和成本,并根据文献限制了可能的价值范围。aircra与所选燃料兼容的概念是使用aircra-庞大系统多学科设计和优化(MDAO)方法建模的。我们还优化了thraight轨迹,以最大程度地减少持续的围栏长度并量化燃油燃烧的相关增加。我们为单个过道市场提出并评估了3000海里的设计范围和220个席位的解决方案,因为在这个市场中Aircra(即,空中客车A320和波音737家族)在2019年占航空燃料燃烧的44%(请参阅ESI-S2†)。我们使用蒙特卡洛方法传播了对环境影响建模的不确定性,并指出了这项工作中提出的gures中的95%condence间隔(CI)。超出了提出的Aircra系统的特定情况,此处使用的方法展示了使用这项工作没有量化相关的通信噪声(估计比货币化气候和空气质量影响低的数量级17),但此处提供的解决方案并不排除使用降低噪声技术和操作过程的使用。
(PM 2.5)。航空的总空气质量和气候影响(包括燃料生命周期排放)估计为每吨喷气燃料燃烧的1600美元(仅是In-ight CO 2排放的影响的2倍),其中32%是由于降级的空气质量(请参阅ESI,S1†部分)。要全面评估由于新技术或政策而引起的环境影响,需要量化航空的空气质量和气候影响(包括燃料寿命释放和非CO 2气候烟草)。先前的研究已量化或提出的解决方案,以解决航空环境影响的一个或两个方面。较旧的评估,例如9,10,仅涵盖CO 2引起的气候影响。Lee等人最近对航空环境影响的元评估。4估计由于航空CO 2和非CO 2来源引起的气候影响,但没有量化航空的空气污染影响(约1/3的环境影响)。最近评估了能源和CO 2途径以减少航空气候影响13 - 15的许多研究也忽略了空气污染的影响。少数提出解决航空环境影响解决方案的研究狭窄地集中在挑战的单一方面(例如,,可持续航空燃料(SAF),以解决航空公司2;解决问题的操作解决方案; 16个解决空气质量的技术解决方案12)。迄今为止尚无评估,该解决方案同时应对气候(包括生命周期排放和非CO 2影响)以及在一项一致的研究中对航空的空气质量影响。同时评估的评估需要一致地捕获各种缓解措施之间的相互依赖性和耦合,从而将航空的气候和空气质量影响最小化。这样的评估对于评估将航空环境影响减少到接近零的可行性至关重要。在本文中,我们确定并评估具有接近零环境影响的航空运输系统(占航空的气候和空气质量影响)。我们的系统具有净零气候影响,而相对于当今的空气质量影响降低了95%(或更高)。我们量化了生产替代燃料的生命周期排放和成本,并根据文献限制了可能的价值范围。aircra与所选燃料兼容的概念是使用aircra-庞大系统多学科设计和优化(MDAO)方法建模的。我们还优化了thraight轨迹,以最大程度地减少持续的围栏长度并量化燃油燃烧的相关增加。我们为单个过道市场提出并评估了3000海里的设计范围和220个席位的解决方案,因为在这个市场中Aircra(即,空中客车A320和波音737家族)在2019年占航空燃料燃烧的44%(请参阅ESI-S2†)。我们使用蒙特卡洛方法传播了对环境影响建模的不确定性,并指出了这项工作中提出的gures中的95%condence间隔(CI)。超出了提出的Aircra系统的特定情况,此处使用的方法展示了使用这项工作没有量化相关的通信噪声(估计比货币化气候和空气质量影响低的数量级17),但此处提供的解决方案并不排除使用降低噪声技术和操作过程的使用。