研究沉积档案中抗生素耐药基因(ARGS)的发生提供了重建历史(即非人性化来源)Args的分布和传播的机会。尽管在淡水环境中的ARG引起了极大的关注,但几个世纪以来几个世纪以来,多样性和丰富性的历史差异仍然很大程度上是未知的。在这项研究中,我们研究了过去600年的成谷湖沉积物中发现的细菌群落,ARG和移动遗传因素(MGE)的垂直变化模式。在保存在沉积物中的抵抗中,发现177个Args亚型,氨基糖苷和多药耐药性最丰富。上层沉积物层中的Arg丰度(等效于1940年代以来抗生素时代)低于抗生素时代期间的Arg丰度,而在后抗生体时代,ARG的多样性较高,可能是因为在最近的几十年中,人类诱导的综合疗法促进了BAC的促进和替代品的剂量。统计分析表明,MGE的丰度和细菌群落结构与ARG的丰度和多样性显着相关,这表明ARG的发生和分散性可能会通过MGE在不同细菌之间传递。我们的结果为淡水环境中ARG的自然历史提供了新的观点,对于理解暂时性的基因和ARG的传播至关重要。
ATCC BAA-835 T [9, 34] 中这些基因的存在进一步证明这些风险基因可能是 A. muciniphila 所固有的。使用 ISfinder 和 blastn 分析了移动遗传元件 (MGE),包括质粒、插入序列 (IS) 和整合子。检测到 Akk11 中存在 IS,这与
通过各种环境传播抗生素耐药性(AR),而AR热点在公共卫生危机中的作用正在越来越受到关注。水生生物膜被推测,由于它们收集了不同的微生物和促进水平基因转移(HGT),因此在AR扩散中起着重要作用。然而,很少有研究表征自然生物膜中存在的AR基因(抵抗)。这项研究的目的是使用小脑子长阅读测序分析叶丁顿(Epilethic Bioflms)中的微生物组,抵抗组和移动遗传元素(MGE)(N = 56)(n = 56),从俄亥俄州的多用途水域中,以阐明临床相关的Periphyton在临床上相关的角色。周围微生物组的主要成员包括黄杆菌和气管。总体而言,围叶顿微生物群落随季节和位置发生了变化。特别是,在夏季,生物膜中的卟啉菌和蓝细菌的物种更为丰富。潜在的致病性细菌,包括家族肠杆菌科,病原体koreensis和人类病原体志贺氏菌浮华,在大城市,哥伦布斯,OH,OH,比上游的地点更丰富。多种类别的甲基抗抗抗原抗性体带有多种AR基因,但临床相关性很小。大肠杆菌,大肠杆菌和穆氏菌是AR基因(ARGS)和MGE的常见宿主。假单胞菌和蓝细菌经常是MGE宿主,但不是AR基因,表明这些分类单元在HGT内和周围生物膜周围的潜在重要作用。虽然这项研究的测序深度相对较浅,但这些发现突出了在生物膜中ARG传播的迁移率潜力。
施用生物固体可以提高土壤肥力和作物产量,但也伴随着重金属和抗生素引入的风险。在重金属污染环境下,利用丛枝菌根真菌 (AMF) 是一种有效的策略,可以增强土壤微生物群落稳定性和植物对重金属的耐受性,并减少抗生素抗性基因 (ARG) 的传播。本研究通过盆栽试验探究了接种 AMF 对土壤和植物重金属含量以及土壤微生物群落的影响。结果表明,接种 AMF 显著提高了植物生物量,并降低了土壤和植物重金属含量。虽然接种 AMF 不会改变细菌和真菌群落的组成,但在较高的生物固体浓度下,它增加了细菌的多样性。值得注意的是,接种 AMF 增强了微生物网络的复杂性,并增加了关键类群的丰度。此外,在接种 AMF 的土壤中,一些对重金属具有高抗性的有益微生物得到了富集。宏基因组分析显示,与未接种AMF的土壤相比,接种AMF的土壤中移动遗传元件(MGE)基因IS91减少,重金属抗性基因增加。MGE介导的耐药基因(ARG)扩散减少的可能性是本研究的主要发现之一。需要注意的是,本研究还检测到接种AMF的高生物固体改良土壤中少数耐药基因的富集。总体而言,接种AMF可能是一种有效的农业策略,可以减轻与生物固体、重金属和抗生素耐药性相关的环境风险,从而促进可持续的土壤管理和健康。
病毒和其他移动遗传元件 (MGE) 对大多数已研究的细胞生物体而言都是潜在威胁,它们充当捕食者或降低适应性。作为应对,生物体进化出了多种防御策略,主要分为先天系统和适应性系统。先天系统的特点是被某些预设的感染特征激活。另一方面,适应性系统可以学会检测以前未被识别的病原体。长期以来,脊椎动物的适应性免疫系统是唯一已知的适应性系统的例子,但已证明古菌和细菌的成簇规律间隔短回文重复序列 (CRISPR)-Cas 系统是真正的适应性免疫系统 (1)。所有已研究的 CRISPR-Cas 系统都基于短 DNA 或 RNA 序列(原间隔区),例如来自病毒基因组的序列,这些序列作为 DNA 间隔区存储在 CRISPR 基因座中。长前体 CRISPR 转录本 (pre-crRNA) 被加工成 CRISPR RNA (crRNA),并被 Cas 蛋白效应子用来定位和摧毁匹配的靶标。根据 CRISPR-Cas 系统的类型,靶标可以是 DNA 或 RNA。CRISPR-Cas 系统种类繁多,目前分为两类。第 1 类包括 I、III 和 IV 型系统,第 2 类包括 II、V 和 VI 型系统。每种系统类型又包括几种亚型 (2, 3)。可编程核酸酶,如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 Cas9,可通过诱导致残突变在真核细胞中充当抗 MGE 系统。特别是,Cas9 彻底改变了真核生物的基因编辑,已被证明可以有效靶向多种人类病毒 (4)。在基本的 Cas9 技术中,DNA 切割由单一引导
摘要:居住在河流地区沉积环境中的微生物群落是原始河流生态系统的关键指标。虽然已经建立了抗生素抗性与致病性与核心肠道细菌之间的相关性,但存在着一个很大的知识差距,即抗生素抗性基因(ARGS)与人类病原细菌(HPB)与河流中的特定微生物的相互作用,通常引用了“ terrestrial terestrial gut”。在自然栖息地内,了解微生物组成,包括细菌和居民遗传因素,例如ARGS,HPB,移动遗传因素(MGE)和毒力因子(VFS)(VFS),在全球变化的背景下是必须的。为了解决这一差距,在本研究中进行了一种基于富集的培养基互补培养物和宏基因组学,以表征微生物生物库,并提供初步的生态见解,以介绍兰坎河源流域中ARG的传播。根据我们的发现,在兰开河源盆地的主流中,有674种细菌菌株在厌氧条件下包括540个菌株,在有氧条件下有124个菌株,已成功地分离出来。其中,有98种被确定为已知物种,而4种是潜在的新物种。在这98种中,有30种与人类健康有关的HPB。此外,Baca和Bacitracin分别作为该河中最丰富的ARG和抗生素出现。此外,对ARGS的风险评估主要表明危害人类健康的风险等级(等级IV)。总而言之,基于富集的培养基学被证明可有效分离稀有和未知细菌,尤其是在厌氧条件下。ARG的出现显示与MGE的相关性有限,表明对兰开河源源盆地主流内人类健康的威胁很小。
DOI:https://doi.org/10.22271/j.ento.2020.v8.i6n.7968 摘要 成簇的规律间隔的短回文重复序列 (CRISPR)-Cas 系统是一种序列特异性的适应性免疫策略,广泛存在于原核生物系统中,赋予针对各种噬菌体和其他 MGE(如质粒、基因组岛、整合和接合元件)的先天免疫力。即使存在如此复杂的机制,细菌也并非总是能完全战胜噬菌体。这是由于噬菌体和其他 MGE 产生的抗 CRISPR 蛋白。自 2013 年发现以来,迄今为止已鉴定出 60 多个 Acr 家族,还有更多家族尚待发现。研究揭示了 Acrs 采用的多种机制,通过这些机制介导对 CRISPR 防御系统的控制。随着该领域的发展,Acrs 可作为 CRISPR-Cas 技术的潜在控制策略。在本综述中,我们重点介绍了各种抗 CRISPR 蛋白的发现、它们对抗细菌 CRISPR-Cas 系统的作用机制,以及 Acrs 在基因编辑和基因治疗技术中的潜在应用。 关键词:抗 CRISPR、噬菌体、Cas 蛋白、CRISPR、基因组编辑 简介 噬菌体和细菌已经战争了数百万年,噬菌体控制着细菌种群的数量和组成。为了对抗来自噬菌体的这种持续威胁,细菌进化出了非常多样化的防御策略,将检查点设置在噬菌体生命周期的各个阶段。这包括阻断噬菌体附着、抑制 DNA 进入、开发限制-修饰系统、流产感染系统 (Abi) 和干扰噬菌体组装 [1] 。除了上述策略外,细菌还进化出了一种称为 CRISPR Cas 的序列特异性适应性免疫策略 [2] 。 CRISPR 阵列是有关先前感染细菌细胞的噬菌体的数据仓库。Cas 蛋白与 CRISPR 阵列一起构成了这种 RNA 引导的核酸酶复合物。宿主细胞借助称为原间隔区相邻部分 (PAM) 的短序列区分自身 DNA 和入侵的外来移动遗传元件的 DNA [3] 。作为适应性免疫的一部分,所有系统都通过三个主要阶段发挥作用:适应或间隔区获取、表达或生物发生以及干扰阶段。在第一阶段,Cas1-Cas2 复合物识别 PAM 并切除目标 DNA 的一小部分(称为原间隔区),然后将其作为间隔区序列整合到 CRISPR 基因座中。其他辅助因子(如 Cas4、Cas1、Csn2 和逆转录酶 (RT))也可以参与获取阶段。在下一个阶段,CRISPR 基因座转录为单个前 crRNA,然后加工成成熟的 CRISPR RNA (crRNA) [4] 。每个 crRNA 包含部分侧翼重复序列和间隔序列。在干扰阶段,crRNA 与 Cas 蛋白一起被招募以形成核糖核蛋白复合物,该复合物继续在细胞中寻找与 crRNA 间隔序列的任何匹配。如果发现,则根据 CRISPR Cas 系统的类别,通过招募新蛋白质或在复合物本身内激活来启动核酸酶活性。CRISPR-Cas 系统分为两类、六种类型和 30 多个亚型 [5, 6, 7]。第 1 类 CRISPR Cas 系统包括 I、III 和 IV 型,并使用多亚基 Cas 效应分子形成级联复合物。而在第 2 类系统(II、V 和 VI 型)中,靶标识别、结合和切割功能由单个效应蛋白执行。由于这种高度多样化和高效的机制,CRISPR Cas 系统不仅可以保护细菌免受噬菌体的侵害,还可以保护细菌免受其他移动遗传元件 (MGE) 的侵害,如质粒、基因组岛、整合元件和接合元件 [8]。
摘要经常暴露于外国核酸,细菌和古细菌已经开发出一种巧妙的适应性防御系统,称为CRISPR-CAS。该系统由群集的定期间隔短的短质重复序列(CRISPR)阵列以及与CRISPR(CAS)相关基因组成。该系统由一种复杂的机械组成,该机制将病毒和移动遗传元素(MGE)的外国核酸碎片整合到CRISPR阵列中。插入的片段(垫片)被转录,然后被CAS蛋白用作识别和失活的指导RNA。CRISPR-CAS系统的不同类型和家族由具有进化轨迹的独特适应和效应模块组成,部分独立。效应器模块的OIGIN和间隔者积分/缺失的机理远不清楚。在本文中提出了有关CRISPR-CAS系统的结构,生态和演变的最新数据及其在原核生物中辅助基因组调节中的作用。
大脑皮层由谷氨酸能和GABA能神经元亚型多样化,这些亚型显示出特定的电生理,分子,形态学和Hodologicy特性。兴奋性投射神经元来自发育中的皮质内的背祖细胞,而GABA能抑制性抑制性中间神经元是在尾和中间神经节eminence(CGE和MGE分别)以及前尾部和中间的神经节感染性中产生的,以及在preoptic区域(POA)。皮质神经元被组织成层,这些层是由跨时间的内而外的迁移模式产生的。早期出生的神经元填充了深层,而后长的神经元侵入皮质的上层。给定兴奋性皮质神经元的层状,分子和实际身份定义了其在大脑其余部分内的特定连通性模式[1]。单细胞转录组研究强调了在人类和小鼠中部分保守的皮质兴奋性神经元的显着多样性[2]。在哺乳动物之间也保守了不同神经亚型的顺序产生。然而,根据物种特异性类型的神经祖细胞的存在以及祖细胞池扩张,神经发生和最终神经元成熟的特定时机可能会有所不同。另外,神经元亚型的层分布[2]和不同大脑区域中每一层的相对大小在灵长类动物和啮齿动物中都有变化[3]。