摘要 — 生物信息学和人工智能 (AI) 是快速发展的工具,它们促进了移动遗传元素 (MGE) 的注释,从而能够预测污染环境中的健康风险因素,例如抗生素抗性基因 (ARG)。本研究旨在评估四种基于 AI 的质粒注释工具 (Plasflow、Platon、RFPlasmid 和 PlasForest) 的性能,通过使用定义的性能参数来识别从哥斯达黎加维里拉河获得的一个沉积物样本的宏基因组中的 ARG。我们从样本中提取并测序完整的 DNA,组装宏基因组,然后使用每种生物信息学工具进行质粒预测,并使用抗性基因标识符网络门户进行 ARG 注释。计算了评估质粒的每个 ARG 预测结果的灵敏度、特异性、精确度、阴性预测值、准确度和 F1 分数。值得注意的是,Platon 在评估的工具中表现最高,获得了优异的分数。相反,Plasflow 似乎难以区分染色体和质粒序列,而 PlasForest 在处理小重叠群时遇到了限制。RF- Plasmid 表现出较低的特异性,并且其分类单元依赖的工作流程表现不佳。我们建议采用 Platon 作为抗性基因组研究的首选生物信息学工具
crisprs和CAS蛋白提供具有RNA引导的适应性免疫的微生物,并为程序型基因组操纵提供了跨形成技术机会1,2。cas9及相关酶现在被广泛用于编辑或调节培养细胞和原代细胞,动物和植物的基因组,从而极大地加速了农业和合成生物学的基本研究和增强突破的速度。此外,基因组编辑还具有了解人类遗传学和治愈遗传疾病的潜力。CRISPR – CAS系统的生物学和技术能力促进了努力,以了解负责CRISPR – CAS功能的分子,包括针对性的DNA结合,切割,编辑和整合。CRISPR-CAS系统在结构和机械上是多样的。这些系统通常由CRISPR阵列,适应模块和CRISPR RNA(CRRNA)生物发生和DNA/RNA解关模块组成(在参考文献3,4)中进行了综述(图1,2)。为提供适应性和可遗传的免疫力,CRISPR阵列将移动遗传元件(MGE)的遗传信息存储为“间隔者”序列(通常大小约为25–50 bp,尽管大小可以在〜17至〜172 bp范围内5,6插入短的PALINDROMIC重复段(审查)(在参考中审查。7)。CAS1 – CAS2适应机械在细菌细胞中将病毒或质粒DNA(质粒DNA)的段(质粒DNA)组成,并将其整合到CRISPR阵列中(图1)。在靶向DNA靶向CRISPR-CAS系统中,原始的探针的选择取决于存在3-5 bp长的原始探针邻接基序(PAM),该基序(PAM)未集成到CRISPR阵列中,并用于
通过各种环境传播抗生素耐药性(AR),而AR热点在公共卫生危机中的作用正在越来越受到关注。水生生物膜被推测,由于它们收集了不同的微生物和促进水平基因转移(HGT),因此在AR扩散中起着重要作用。然而,很少有研究表征自然生物膜中存在的AR基因(抵抗)。这项研究的目的是使用小脑子长阅读测序分析叶丁顿(Epilethic Bioflms)中的微生物组,抵抗组和移动遗传元素(MGE)(N = 56)(n = 56),从俄亥俄州的多用途水域中,以阐明临床相关的Periphyton在临床上相关的角色。周围微生物组的主要成员包括黄杆菌和气管。总体而言,围叶顿微生物群落随季节和位置发生了变化。特别是,在夏季,生物膜中的卟啉菌和蓝细菌的物种更为丰富。潜在的致病性细菌,包括家族肠杆菌科,病原体koreensis和人类病原体志贺氏菌浮华,在大城市,哥伦布斯,OH,OH,比上游的地点更丰富。多种类别的甲基抗抗抗原抗性体带有多种AR基因,但临床相关性很小。大肠杆菌,大肠杆菌和穆氏菌是AR基因(ARGS)和MGE的常见宿主。假单胞菌和蓝细菌经常是MGE宿主,但不是AR基因,表明这些分类单元在HGT内和周围生物膜周围的潜在重要作用。虽然这项研究的测序深度相对较浅,但这些发现突出了在生物膜中ARG传播的迁移率潜力。
DOI:https://doi.org/10.22271/j.ento.2020.v8.i6n.7968 摘要 成簇的规律间隔的短回文重复序列 (CRISPR)-Cas 系统是一种序列特异性的适应性免疫策略,广泛存在于原核生物系统中,赋予针对各种噬菌体和其他 MGE(如质粒、基因组岛、整合和接合元件)的先天免疫力。即使存在如此复杂的机制,细菌也并非总是能完全战胜噬菌体。这是由于噬菌体和其他 MGE 产生的抗 CRISPR 蛋白。自 2013 年发现以来,迄今为止已鉴定出 60 多个 Acr 家族,还有更多家族尚待发现。研究揭示了 Acrs 采用的多种机制,通过这些机制介导对 CRISPR 防御系统的控制。随着该领域的发展,Acrs 可作为 CRISPR-Cas 技术的潜在控制策略。在本综述中,我们重点介绍了各种抗 CRISPR 蛋白的发现、它们对抗细菌 CRISPR-Cas 系统的作用机制,以及 Acrs 在基因编辑和基因治疗技术中的潜在应用。 关键词:抗 CRISPR、噬菌体、Cas 蛋白、CRISPR、基因组编辑 简介 噬菌体和细菌已经战争了数百万年,噬菌体控制着细菌种群的数量和组成。为了对抗来自噬菌体的这种持续威胁,细菌进化出了非常多样化的防御策略,将检查点设置在噬菌体生命周期的各个阶段。这包括阻断噬菌体附着、抑制 DNA 进入、开发限制-修饰系统、流产感染系统 (Abi) 和干扰噬菌体组装 [1] 。除了上述策略外,细菌还进化出了一种称为 CRISPR Cas 的序列特异性适应性免疫策略 [2] 。 CRISPR 阵列是有关先前感染细菌细胞的噬菌体的数据仓库。Cas 蛋白与 CRISPR 阵列一起构成了这种 RNA 引导的核酸酶复合物。宿主细胞借助称为原间隔区相邻部分 (PAM) 的短序列区分自身 DNA 和入侵的外来移动遗传元件的 DNA [3] 。作为适应性免疫的一部分,所有系统都通过三个主要阶段发挥作用:适应或间隔区获取、表达或生物发生以及干扰阶段。在第一阶段,Cas1-Cas2 复合物识别 PAM 并切除目标 DNA 的一小部分(称为原间隔区),然后将其作为间隔区序列整合到 CRISPR 基因座中。其他辅助因子(如 Cas4、Cas1、Csn2 和逆转录酶 (RT))也可以参与获取阶段。在下一个阶段,CRISPR 基因座转录为单个前 crRNA,然后加工成成熟的 CRISPR RNA (crRNA) [4] 。每个 crRNA 包含部分侧翼重复序列和间隔序列。在干扰阶段,crRNA 与 Cas 蛋白一起被招募以形成核糖核蛋白复合物,该复合物继续在细胞中寻找与 crRNA 间隔序列的任何匹配。如果发现,则根据 CRISPR Cas 系统的类别,通过招募新蛋白质或在复合物本身内激活来启动核酸酶活性。CRISPR-Cas 系统分为两类、六种类型和 30 多个亚型 [5, 6, 7]。第 1 类 CRISPR Cas 系统包括 I、III 和 IV 型,并使用多亚基 Cas 效应分子形成级联复合物。而在第 2 类系统(II、V 和 VI 型)中,靶标识别、结合和切割功能由单个效应蛋白执行。由于这种高度多样化和高效的机制,CRISPR Cas 系统不仅可以保护细菌免受噬菌体的侵害,还可以保护细菌免受其他移动遗传元件 (MGE) 的侵害,如质粒、基因组岛、整合元件和接合元件 [8]。
病毒和其他移动遗传元件 (MGE) 对大多数已研究的细胞生物体而言都是潜在威胁,它们充当捕食者或降低适应性。作为应对,生物体进化出了多种防御策略,主要分为先天系统和适应性系统。先天系统的特点是被某些预设的感染特征激活。另一方面,适应性系统可以学会检测以前未被识别的病原体。长期以来,脊椎动物的适应性免疫系统是唯一已知的适应性系统的例子,但已证明古菌和细菌的成簇规律间隔短回文重复序列 (CRISPR)-Cas 系统是真正的适应性免疫系统 (1)。所有已研究的 CRISPR-Cas 系统都基于短 DNA 或 RNA 序列(原间隔区),例如来自病毒基因组的序列,这些序列作为 DNA 间隔区存储在 CRISPR 基因座中。长前体 CRISPR 转录本 (pre-crRNA) 被加工成 CRISPR RNA (crRNA),并被 Cas 蛋白效应子用来定位和摧毁匹配的靶标。根据 CRISPR-Cas 系统的类型,靶标可以是 DNA 或 RNA。CRISPR-Cas 系统种类繁多,目前分为两类。第 1 类包括 I、III 和 IV 型系统,第 2 类包括 II、V 和 VI 型系统。每种系统类型又包括几种亚型 (2, 3)。可编程核酸酶,如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 Cas9,可通过诱导致残突变在真核细胞中充当抗 MGE 系统。特别是,Cas9 彻底改变了真核生物的基因编辑,已被证明可以有效靶向多种人类病毒 (4)。在基本的 Cas9 技术中,DNA 切割由单一引导