II 近年来,定期航班延误的普遍存在引起了人们对使用新技术的极大兴趣,这些新技术有望提高机场容量,尤其是在恶劣天气下。对新技术的兴趣的一个结果是精密跑道监控 (PRM) 系统的开发。PRM 系统使用增强的雷达和显示功能,结合自动安全警报,可以在仪表气象条件下安全地对相距小于 4300 英尺(当前不使用 PRM 的最小间隔)的平行跑道进行独立排序进近。在过去几年中,林肯实验室开展了一项 PRM 开发计划,其中包括现场数据收集、演示、性能评估和风险分析。部分基于该计划的结果,美国联邦航空局最近批准在用 PRM 系统监控的情况下对相距 3400 英尺或以上的平行跑道进行独立排序进近。美国联邦航空局还启动了一项实施计划,在美国几个主要机场安装 PRM 系统。本文报告了林肯实验室开展的现场活动的结果;使用这些结果来验证 PRM 系统的性能和安全性,并继续开发林肯实验室 PRM 计划的一部分。O
19 世纪,查尔斯·巴贝奇 (Charles Babbage) 将计算机设想为模拟设备。然而,直到 150 年后,美国海军才建造了一台机械模拟计算机来求解微分方程。随着摩尔定律的终结,光子计算利用光子的速度、带宽和能效,为更快、更高效、可扩展的模拟计算系统注入了新的活力,重振了模拟计算的前景。本文认为,网络社区应该为可插拔转发器增强光子计算功能,以实现向后兼容的网络内计算解决方案。我们提出了光纤上光子计算,当数据在光域中时,在网络转发器内执行计算操作。我们讨论了将计算无缝集成到光通信链路结构中所需的组件。然后,我们讨论了光纤上光子计算的几个用例,包括机器学习推理、视频编码、负载平衡和入侵检测。
引用:Gao, Haining 和 Gallant, Betar M. 2020. “碱金属气体电池化学和应用方面的进展。”《自然评论化学》,4 (11)。
2 威胁和网络攻击可能来自各种恶意行为者,例如外国、恐怖组织、私营公司、外部黑客或系统运营商、电力公司和供应商之间的内部“坏人”。这些行为者可能试图破坏电网运营、破坏基础设施或窃取信息。他们可能会雇佣犯罪组织攻击公用电网,以出于政治原因破坏网络控制和发电,或使用“勒索软件”获取经济利益。
∗ Acemoglu:麻省理工学院和加拿大高等研究院,daron@mit.edu。Aghion:哈佛大学斯德哥尔摩经济学院和加拿大高等研究院,paghion@fas.harvard.edu。Bursztyn:加州大学洛杉矶分校,leonardo.bursztyn@anderson.ucla.edu。Hemous:哈佛大学,hemous@fas.harvard.edu。我们感谢 Robert Barro、Emmanuel Farhi、Elhanan Helpman、Dirk Krueger、Per Krusell、David Laibson、Ariel Pakes、Torsten Persson、Nicholas Stern、Nancy Stokey、Martin Weitzman 和三位匿名审稿人提出的宝贵建议。我们还受益于哈佛大学、麻省理工学院、斯坦福大学、伯克利大学、斯德哥尔摩 IIES、苏黎世、美国国家经济研究局暑期学院、中西部宏观会议、加拿大高级研究院、计量经济学会拉丁美洲会议、TSE 和西蒙弗雷泽大学的研讨会和会议参与者的评论。Daron Acemoglu 和 Philippe Aghion 分别感谢图卢兹信息技术网络 (http://idei.fr/tnit/) 和 CIFAR 以及 CIFAR 和 Bruegel 提供的资金支持。 1 例如,请参阅 Peter A. Scott、Dáithí A. Stone 和 Myles R. Allen (2004) 关于人类活动对 2003 年欧洲热浪的影响、Kerry Emanuel (2005) 和 Christopher W. Landsea (2005) 关于过去几十年间热带气旋和大西洋飓风的影响和破坏力增强的文章,以及 Robert J. Nicholls 和 Jason A. Lowe (2006) 关于海平面上升的文章。 2 例如,请参阅 William D. Nordhaus (1994)、Christopher N. MacCracken、James A. Edmonds、Son H. Kim 和 Ronald D. Sands (1999)、Nordhaus 和 Joseph Boyer (2000)。
1. 韩国基础科学研究所量子纳米科学中心 (QNS),首尔 03760,韩国 2. 梨花女子大学物理系,首尔 03760,韩国 3. 麻省理工学院电子研究实验室,美国马萨诸塞州剑桥市马萨诸塞大道 77 号,邮编 02139 4. 麻省理工学院林肯实验室,美国马萨诸塞州列克星敦市 Wood 街 244 号,邮编 02421 5. 代尔夫特理工大学 QuTech 和 Kavli 纳米科学研究所,Lorentzweg 1, 2628CJ 代尔夫特,荷兰 6. 牛津大学物理系 CAESR、克拉伦登实验室,英国牛津 Parks Road 号,邮编 OX1 3PU 7. 化学系“U. Schiff” 和 INSTM,佛罗伦萨大学,50109 Sesto Fiorentino,意大利 8. 巴塞尔大学物理系,Klingelbergstrasse 82,4056 Basel,瑞士 9. 加利福尼亚大学圣巴巴拉分校物理系,CA 93106,美国 10. QuantaLab,国际伊比利亚纳米技术实验室 (INL),Avenida Mestre José Veiga,4715-310 Braga,葡萄牙 11. 阿利坎特大学物理应用系,San Vicente del Raspeig 03690,西班牙 12. 新南威尔士大学电气工程与电信学院,悉尼,NSW2052,澳大利亚 * 电子邮件:AJH:heinrich.andreas@qns.science,AM:a.morello@unsw.edu.au
最多六个项目将被选为 MIT THINK 决赛入围者;这些学生将参加 MIT THINK 学者计划。决赛入围者将被邀请前往 MIT 参加决赛入围者之旅。在旅途中,决赛入围者将会见 THINK 团队、介绍他们的项目提案、与有共同研究兴趣的 MIT 教授会面,并参观 MIT 实验室。所有决赛入围者都将获得资金(最高 1,000 美元)和指导以完成他们的项目。成功完成项目并提交最终报告后,决赛入围者将被授予 2024 年竞赛的 MIT THINK 学者称号。
摘要:闭环麻醉输送 (CLAD) 系统可帮助麻醉师在较长时间内有效达到并维持所需的麻醉深度。典型的 CLAD 系统将使用根据生理信号计算出的麻醉标记物作为实时反馈,以调整麻醉剂量,以达到标记物的所需设定点。由于 CLAD 的控制策略在最近文献中报道的系统中各不相同,因此对常见控制策略进行比较分析会很有用。对于基于完善的房室药代动力学和 S 型 Emax 药效学模型的非线性植物模型,我们用数字方式分析了三种输出反馈线性控制策略的设定点跟踪性能:比例积分微分 (PID) 控制、线性二次高斯 (LQG) 控制和具有积分作用的 LQG (ILQG)。具体来说,我们针对患者无法获得设备模型参数、控制器基于标称模型设计且控制器增益在整个疗程中保持不变的情况对多个 CLAD 疗程进行了数值模拟。基于此处执行的数值分析,并根据我们选择的模型和控制器,我们推断 PID 控制在准确度和偏差方面优于 ILQG,而 ILQG 又优于 LQG。在噪声观测的情况下,可以调整 ILQG 以提供更平稳的输注速率,同时实现与 PID 相当的稳态响应。此处报告的数值分析框架和结果可以帮助 CLAD 开发人员选择控制策略。本文也可作为 CLAD 控制理论教学的教程论文。
摘要 当我们学习时,大脑中会发生什么?自从 Cajal 的开创性工作以来,该领域已经取得了许多发现,表明经验如何改变单个突触的结构和功能。然而,最近的进展强调了从神经元和突触群体之间复杂的相互作用来理解学习的必要性。我们应该如何在如此宏观的层面上思考学习?在这里,我们开发了一个概念框架来弥合学习运作的不同尺度之间的差距——从突触到神经元再到行为。利用这个框架,我们探索指导跨这些尺度的感觉运动学习的原则,并为该领域未来的实验和理论工作奠定基础。关键词 神经元群体、感觉运动学习、状态空间框架、神经可塑性、维度、内部模型
正如下文活动部分所述,我们的研究和运营团队为公众和会员公司举办了富有创意的在线活动,并在全年尝试了不同的活动形式。值得注意的是,我们的会员关系团队为会员公司开发了“媒体实验室焦点”系列。每两个月举办一次,每次活动包括一系列研究讨论、研讨会和一份可下载的报告,重点介绍媒体实验室针对当前主题的研究(例如,技术与社会公平、远程创意和新健康)。此外,媒体实验室教职员工推出了一个新的杰出演讲者系列,即媒体实验室观点,该系列邀请了世界知名的作家、研究人员、艺术家和创新者,探讨技术与人交汇处的当前主题。观点系列将于 2021 财年以虚拟方式呈现,并将在下一财年转变为混合形式。