可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
图1:培训数据和主动学习工作流程:a)水溶液中Mg 2+的训练子集,b)乙腈中PD 2+的训练子集(MECN),c)用于训练机器学习电位(MLP)的主动学习工作流程的方案。
(2) 资产类别代表如下:MLP,标准普尔 MLP 指数;高收益债券,彭博巴克莱美国公司高收益债券指数;新兴市场 (EM) 债券,摩根大通 EMBI 全球核心指数;公司债券,彭博巴克莱美国公司债券指数;房地产投资信托基金,富时 NAREIT 全股票房地产投资信托基金指数;股票,标准普尔 500 指数;优先股,美银美林固定利率优先证券指数。
摘要 量子架构搜索 (QAS) 是优化和自动设计量子电路以实现量子优势的一个有前途的方向。QAS 中的最新技术强调基于多层感知器 (MLP) 的深度 Q 网络。然而,由于可学习参数数量众多以及选择适当激活函数的复杂性,它们的可解释性仍然具有挑战性。在这项工作中,为了克服这些挑战,我们在 QAS 算法中使用了 Kolmogorov-Arnold 网络 (KAN),分析了它们在量子态准备和量子化学任务中的效率。在量子态准备中,我们的结果表明,在无噪声的情况下,成功的概率是 MLP 的 2 到 5 倍。在嘈杂的环境中,KAN 在近似这些状态时的保真度优于 MLP,展示了其对噪声的鲁棒性。在解决量子化学问题时,我们通过将课程强化学习与 KAN 结构相结合来增强最近提出的 QAS 算法。通过减少所需的 2 量子比特门的数量和电路深度,这有助于更有效地设计参数化量子电路。进一步的研究表明,与 MLP 相比,KAN 需要的可学习参数数量明显较少;然而,KAN 执行每集的平均时间更长。
建模3D对象有效地成为计算机视觉研究中的一个核心主题。传统代表涉及几何表示的网格,体素网格以存储SDF或占用率之类的值或用于外观建模的UV地图。由于其离散的性质,其表示功能受硬件限制的约束。采用多层感知器(MLP)允许形状[5,10,22,29,30],辐射场[24],纹理[17,20,28,47]等的高质量表示。Mildenhall等。[24]表明,高视觉保真度是使用频率编码来编码功能的关键。近年来,由于使用较小的MLP,大大提高了训练和推理速度,多分辨率参数编码变得越来越流行。尽管如此,由于其直观的编辑功能和有利的动画可能性,许多应用程序仍然依赖网格作为对象表示。不幸的是,直接在网格上进行了少数作品铲球外观建模。先前的工作将纹理直接作为3D空间中的连续函数回归[28],并使用频率编码[1,40]。内在的编码[17]也被引入以解锁更大的视觉细节。Mahajan等。[20]提出了一个有效的多解决顶点 -
美国研究团队为在美国交易所公开交易的美国注册公司以及某些场外交易公司(如果它们在我们的机构投资者客户的投资组合中)的普通股股东大会提供代理分析和投票建议。覆盖范围通常包括普通股股东的公司行为,例如书面同意和破产。ISS 在美国的覆盖范围包括投资公司(包括开放式基金、封闭式基金、交易所交易基金和单位投资信托)、有限合伙企业(“LP”)、主有限合伙企业(“MLP”)、有限责任公司(“LLC”)和业务发展公司。ISS 每年审查其覆盖范围,并且覆盖范围可能会根据客户需求和行业趋势而变化。
• 玉米和小麦的结转库存较高,但产量担忧使价格相对坚挺。人们对印度尼西亚和越南的咖啡产量感到担忧。可可价格已脱离极高水平。 • 能源市场继续放缓,尽管 MLP 和管道表现越来越强劲。乌克兰袭击俄罗斯炼油厂和胡塞武装袭击船只都有可能影响价格。由于担心需求疲软和全球经济疲软,欧佩克继续减产。 • 在采矿业,公司资金受限,导致投资不足。铜和黄金的价格都保持在异常高位,而更多小众商品的价格波动很大。从长远来看,预计采矿大宗商品的需求仍将受到电气化和能源转型的推动。
这些讲义是针对一个关于计算机视觉深度学习的一个学期(12周)课程。课程涵盖了深度学习的理论和实践,重点是计算机视觉中的应用。学生将学习深度学习背后的基础数学,并探索诸如多层感知器(MLP),背传和自动分化,卷积神经网络(CNNS),复发性神经网络(RNN)和变形金刚等主题。这些技术在现代人工智能(AI)系统中起着至关重要的作用,包括图像和视频理解,自然语言处理,生成AI和机器人技术。该课程包括各种实践评估,以增强学生对深度学习的理解和直觉及其在计算机视觉中的应用。学生有望具有强大的编程技能,并以前接触线性代数,微积分和概率理论。评估细节不构成这些注释的一部分。
对于其他机器学习模型,朴素贝叶斯的准确率达到 68.62%,而 SVM(支持向量机)的准确率达到 60.78%。同样,决策树模型的准确率也达到 68.62%。另一种集成技术 Bagging 的准确率达到 66.66%。有趣的是,结合预训练的 VGG-16 和 InceptionV3 模型的混合模型的准确率达到 68.92%。结果表明,卷积神经网络 (CNN) 是最成功的方法,在 MRI 扫描中实现脑肿瘤检测的最高准确率(86.27%)。这表明 CNN 特别擅长学习隐藏在 MRI 图像数据中的关键模式。关键词:磁共振成像 (MRI)、深度学习、卷积神经网络 (CNN)、多层感知器 (MLP)、迁移学习、InceptionV3、特征提取、主成分分析 (PCA)、准确度、VGG16、逻辑回归、随机森林、Ada Boosting、朴素贝叶斯、SVM、决策树、Bagging