摘要该网络研讨会回顾了50年以上Cast MMC的进度。介绍了MMC组件在汽车,铁路,空间,计算机硬件和娱乐设备中的当前使用。列出了MMC行业的信息,包括MMC行业的主要生产商Cast MMC的总量。讨论的一些铸造MMC包括铝石墨,铝碳化铝,铝 - 铝铝和铝式灰烬。在包括铸造厂的制造,生产纳米复合材料,功能梯度材料,句法泡沫,自我修复和自润滑复合材料在内的铸造MMC的当前和未来方向。讨论了在Al-Graphite和Al-Graphite-Sic复合材料中用于压缩机,活塞和旋转发动机的轻质自润滑缸衬里的最新进展。提出了金属基质复合材料的未来前景,包括与这些材料的固化处理有关的基本问题。关键字:复合材料;金属铸造;陶瓷;纳米颗粒。参考
SLM是一个添加剂制造过程,其中金属粉末逐层局部融化,以生成零件以形状或接近净形状。此过程非常适合产生颗粒物增强的MMC,因为它们可以将其体积合并到粉末原料中并在激光熔体下合并,如图2所示。当前,与常规制造的MMC相比,加上制造的MMC的昂贵生产量较低。此外,加上制造的MMC实际上比通过SLM生产的等效金属零件便宜,因为增强件通常比所使用的金属粉末便宜。此外,由于制作零件的层面过程,该添加剂过程可以实现梯度材料制造。每一层可能具有不同的原材料组成。
2022 年 5 月 27 日 — BUC、EAC 和 SWC 压缩为 CUCS。46. MCCS。MMACS。MMCS。MMNCS1。MMNCS2。MNCS。MRCS。MTCS。MUCS1。注:CTICS1 = 中东/北非。
2022 年 3 月 30 日 — MMCS(SW/AW/SS) MICHAEL S. SEARS JR. (多米尼加共和国)。面板#1B。 CDR RICHARD L. DULDULAO。 CMDCM(SW/AW) 基思·A·韦伯 (DC)。 DCCM(SW/AW) 霍勒斯·约翰逊 JR.
目的:本文概述了在激光加工过程中能够在铝/铝合金金属基复合材料 (MMC) 中实现原位强化的一些陶瓷材料。本文还提出了进一步利用原位强化能力开发高质量 MMC 原料材料的观点。设计/方法/方法:撰写本文所采用的方法包括对 MMC 增材制造 (AM) 相关文献的回顾。结果:人们普遍认为,原位强化方法已被证明比非原位方法更具优势。尽管仍存在一些挑战,例如有害相的形成和低熔点元素的蒸发,但原位强化方法可用于为 MMC 的 AM 定制设计复合粉末原料材料。在激光熔化成所需组件之前对原位金属基复合粉末进行预处理或定制设计,为金属增材制造带来了更多希望。实际意义:尚未解决开发可使用合适的 AM 技术直接制造而无需预先进行混合或机械合金化等粉末加工的 MMC 粉末原料的需求。因此,拥有预处理的原位增强 MMC 原料粉末可以轻松制造 MMC 并具有 AM 技术粉末回收的其他优势。原创性/价值:本文解释的想法与金属基复合材料 AM 加工的材料开发有关。本文指出了 MMC 材料原料粉末开发的未来趋势以及进一步开发 MMC 和 AM 技术的新思路。强调了定制设计复合粉末而不是仅仅混合它们的优势。关键词:金属基复合材料、原位增强、AM 材料、SLM、直接打印对本文的引用应以以下方式给出:UA Essien、S. Vaudreuil,用于增材制造的原位金属基复合材料开发:视角,材料与制造工程成就杂志 111/2 (2022) 78-85。 DOI:https://doi.org/10.5604/01.3001.0015.9997
陶瓷是一种脆性材料,具有高导热性和导电性,而陶瓷易碎、导电性差。然而,大多数陶瓷即使在高温下也表现出高刚度和稳定性,而大多数金属材料即使在中温下使用寿命也有限。在高温下,金属会发生微观结构变化和机械性能劣化。最常见的MMC类型是将陶瓷加入金属基体中。陶瓷增强金属复合材料预计比单相金属及其合金具有明显的优势。MMC受益于金属基体的延展性和韧性以及陶瓷增强体的高温稳定性、刚度和低热膨胀,可以满足金属和陶瓷都会独立失效的应用所需的性能[9, 10, 12-15]。
尽管可以从各种底物产生PHA,但由于PHA累积和非PHA蓄积细菌的共存,其PHA的生产能力不一定很高。因此,富集PHA蓄积细菌是使用生物催化剂的有效生产PHA的关键步骤。然而,以前方法中的富集持续时间是一个重要的障碍,限制了每日产生的有益用途是废水处理厂(WWTPS)。因此,我们已经研究了在短时间内实现PHA蓄积细菌高富集的方法(即在WWTPS中汇总了几天)。以此目的,我们采用了有氧动态排放(ADD)过程,通过在盛宴上储存的细胞密度提高细胞密度,通过在盛宴上施加了生态选择压力,从而选择性地富集了PHA盈利的细菌。迄今为止,我们已经成功地获得了混合微生物培养物(MMC),并在几天内使用乙酸或葡萄糖作为富集底物,在几天内具有很高的PHA培养能力。尤其是,仅在将乙酸盐用作底物时,只能在2 d内获得能够存储多达70 wt%PHA的MMC。我们还研究并获得了有关环境友好方法的知识,以恢复存储在MMC中的PHA,而纯度和纯度则没有失去实际上可接受的塑料塑料。
摘要 金属基复合材料 (MMC) 因其增强的机械性能而广泛用于各种应用。MMC 能够减轻结构重量,从而降低燃料消耗,因此在地面运输和航空领域尤其具有吸引力。在本研究中,通过搅拌铸造 [SC] 路线生产了用二硼化锆 (ZrB 2 ) 增强的 AA2017。增强颗粒 ZrB 2 以不同的重量百分比 0、5、10 和 15 混合。根据 ASTM 标准,对铸造样品进行机械表征,例如显微硬度和拉伸测试以及扫描电子显微镜 (SEM) 分析。SEM 分析表明 ZrB 2 颗粒在 AA2017 基体中分散均匀,团聚较少。机械测试结果显示性能有所改善,并且这是针对 AA2017-15wt.% ZrB 2 合成复合材料实现的。显微硬度测试显示,与基础铸态合金相比,VHN 值增加了约 101 (40.28%)。极限抗拉强度 (UTS) 也比铸态合金提高了约 155 MPa (59.79%)。
复合材料是一种先进的材料,其设计结合了其组成相的最佳性能,从而具有优异的机械、热和化学特性。它们由充当粘合相的基质材料和增强复合材料整体性能的增强材料组成。基于基质材料的复合材料分类提供了一种了解其行为和应用的系统方法。主要分类包括聚合物基质复合材料 (PMC)、金属基质复合材料 (MMC) 和陶瓷基质复合材料 (CMC)。每种基质材料都有不同的特性:PMC 重量轻且耐腐蚀,但热稳定性有限;MMC 具有高强度、热导率和韧性,但较重且易腐蚀;CMC 具有出色的耐热性和耐磨性,但易碎且生产成本高。本文深入讨论了这些分类,重点介绍了它们的成分、特性、优势、局限性以及在各个行业中的应用。通过强调基质材料的重要性,本研究旨在为特定工程应用的复合材料的设计、选择和优化提供见解。
ABECS 21 EOCS 16 ABFCS 13 EODCS 71 ABHCS 28 ETCS 37 ACCS 16 FCACS 46 ADCS 75 FCCS 49 AECS 60 GMCS 33 AGCS 5 GSCS 103 AMCS 104 HMCS 138 AOCS 52 HTCS 25 ASCS 34 ICCS 16 ATCS 111 ISCS 39 AWFCS 6 ITCS 95 AWOCS 12 LNCS 7 AWRCS 16 LSCS 86 AWSCS 23 MACS 102 AWVCS 7 MCCS 9 AZCS 11 MMCS 46 BMCS 59 MNCS 28 CECS 5 MRCS 3 CMCS 25 NCCS1 28 cscs 55 NCCS2 30 CTICS1 7 NDCS1 9 CTICS2 11 NDCS2 12 CTICS3 2 oscs 64 CTICS4 5 PRCS 8 CTMCS 11 PSCS 29 CWTCS 33 QMCS 19 CTRCS 26 RPCS 3 CTTCS 30 RSCS 15 cues 24 STGCS 56 DCCS 43 UTCS 5 EMCS 26 YNCS 65 ENCS 55 总计 2303