此免疫表可以代替MMM(麻疹,腮腺炎和脑膜炎球菌ACWY)的完整免疫记录,但是如果您提交官方记录,则不需要签名表。医疗专业人员必须填写此表格的底部,以验证您所需的免疫接种,并初始/日期任何更改,如果您不提交所有必需疫苗的正式记录。
“租用”电子存储,尚未开发出不受太阳风暴影响的存储介质,更不用说经济性等。但我们不仅需要留下我们的科学、艺术、文化和信仰的记录,还需要留下支持我们的生物丰富多样的环境的记录。即使月球上没有任何值得利用的资源,即使它没有为我们提供进一步向太空扩展的栖息地,我们也应该为了长期更重要的事情去月球:“支持我们的文明”,我们的文化,我们的历史,以及我们生活的植物、动物、微生物生命综合体。那些管道里有足够的空间吗?一定有数千公里的完整管道,一百米甚至更多宽。下面的熔岩流层中还有更多。是的,空间还够。
太空成本如此昂贵的首要原因是从佩内明德的火箭专家(包括冯·布劳恩)那里继承下来的一次性哲学:“如果不是有效载荷(即弹头),那它就是消耗品。”你能想象从纽约飞往洛杉矶,在中途经停(芝加哥、达拉斯-沃斯堡等)需要 10,000 个工时才能让飞机准备起飞吗?或者你的飞机被报废了,剩下的旅程需要换一架新的?你能想象驾驶那么远的距离,每次油箱快没油了,你就把车扔掉,再买一辆加满油的车吗?这种荒谬的想法来自于侦察心态。我们去月球或火星不是为了停留和扎根,而是为了侦察并回来报告。所以不需要基础设施。
华盛顿大学要求学生接种麻疹,腮腺炎和脑膜炎球菌脑膜炎。人们认识到,有些学生可以选择基于与我们的疫苗接种要求相抵触的医学,宗教,个人或其他原因或信念的豁免。有资格获得豁免,要求学生与许可的医疗保健提供者一起审查疫苗接种的好处和风险,并记录下面指出的医疗咨询。
蒙大拿州纳舒厄附近的米尔克河 -- 2027.8 20.0 2.2 0.2 329 -- -- -- -- 蒙大拿州沃尔夫波因特的密苏里河 1701.4 1958.6 19.0 15.0 4.0 6,304 -- MMM 蒙大拿州卡尔伯森的密苏里河 1621.0 1883.4 19.0 4.6 -0.2 6,400 -- -- -- -- 蒙大拿州科温斯普林斯的黄石河 -- 5079.1 11.0 0.7 -0.0 705 -- -- -- -- 黄石河蒙大拿州利文斯顿附近的黄石河 -- 4542.5 9.5 MMM -- MMM 蒙大拿州比林斯的黄石河 -- 3081.4 13.5 2.4 0.0 2,271 -- MMM 大角羊蒙大拿州 Bighorn 附近的 R -- 2700.0 9.0 1.7 -0.0 2,518 -- -- -- -- 蒙大拿州 Miles City 的 Tongue R -- 2351.4 10.0 MMM -- -- -- -- 蒙大拿州 Miles City 的 Yellowstone R -- 2333.3 13.0 3.0 -0.0 4,852 -- MMM 蒙大拿州 Locate 附近的 Powder R -- 2384.7 9.0 1.9 0.0 561 -- -- -- -- 蒙大拿州 Sidney 附近的 Yellowstone R -- 1881.3 19.0 4.3 -0.0 9,352 -- MMM 北达科他州 Williston 的 Missouri R 1553.0 1831.8 22.0 15.2 -0.2 -- -- MMML 北达科他州 Watford City 附近的 Missouri R -- 1930.8 20.0 1.0 0.0 0 -- -- -- -- 加里森至奥阿希河段
在过去的二十年中,金属有机框架(MOF)已成为广泛开发的多孔材料类别,并越来越被认为是基于膜的CO 2分离的有希望的候选者。这种潜力主要源于故意自定义其结构和功能以增强与客人分子相互作用的能力。在这项研究中,我们探讨了基于卟啉的MOF的MOF-525作为混合基质膜(MMM)中的纳米填料,由6fda- dam(6fda:6fda:2,2-2-二甲基苯基)(3,4-二甲基苯基)六氟丙烷氨基丙烷硫氨酸酯dian Hydridiide; CO 2 /N 2和CO 2 /CH 4分离的聚合物二氨基苯)分离。之所以选择此特定的MOF,是因为有可能将其卟啉环金属量化以量身定制CO 2分子与MOF框架之间的相互作用。结果,无需使用很高的纳米颗粒载荷而无需使用很高的纳米颗粒加载而无需使用金属化的MOF-525的MMM的CO 2 /N 2和CO 2 /CH 4分离性能。与裸露的聚合膜和2 wt%的MOF-525 mmm相比,可以观察到2 wt%金属的MOF-525 MMM的膜渗透性和选择性提高约20%。对MMM的气体传输特性的进一步分析表明,改进主要是由于MMM中增强的CO 2溶解度以及金属化的MOF-525和CO 2分子之间的相互作用改善。但是,还发现2和5 wt%是最佳载荷值,高于该值,高于该值,MOF纳米颗粒之间的界面缺陷和由粒子聚集引起的聚合物开始出现,从而降低了膜性能。也通过分子模拟证实了这一点,其中尤其是在高颗粒载荷时观察到麦克斯韦模型上的一些高估,这表明非选择性空隙的凝聚力和堆积。尽管如此,我们在这项研究中已成功地显示了在MMM中使用金属的卟啉MOF进行CO 2分离的高效率和效率,因为仅需要相对较低的颗粒载荷(约2 wt%)才能改善膜性能。
启动 MMM/CMM/CM/CM/C 停止 MMM/CM/CM/CM/CM/C 前进/后退方向 MMM/CM/CM/CM/C 泵 MM/CMM/CM/CM/C 喷射器 M/CM/CM/CM/C 应用深度 MM/CM/CM/CM/C 速度(速率) MM/CM/CM/CM/C 在位置停止(服务停止) M/CM/CM/CM/C 可编程端枪 M/CM/CM/CM/C 田间位置(0-359.9 度) MMMM 系统压力 MMMM 枢轴末端压力 MMMM 流量计 MMM 温度 MMM 电压 MM 降雨量 MMM 小时数/转速 MMMMM/C 可编程屏障区域 M/CM/CM/CM/C 智能屏障区域 M/CM/C 智能对准 M/CM/C 屏障处水停留时间 M/CM/CM/CM/C 自动重启 M/CM/CM/C 浪涌故障检测 M GPS过水定时器 M/CM/CM/C 电缆盗窃监控 MM FieldNET Advisor(灌溉调度) MM/CM/CM/C FieldNET 与 WaterTrend(7 天作物用水预报) MMMM 用水报告 aaaaaa 操作历史记录 aaaaaa 可配置警报 aaaaaaa 基本 VRI(最多 360 个扇区) aaa 高级计划 a 负载控制计划 aa DDC 适用于泵站 aa 诊断 aaaa USB 软件更新 aaaa 通过 FieldNET 进行无线软件更新 aaaaaa 用于离线配置和编程的移动应用程序 aa 额外的远程泵管理功能 a 额外的继电器控制应用管理功能 a 配件 二 一 一 二
RADM 克里斯托弗 M. 恩达尔 USN 1110 PPP RDML 马丁 J. MUCKIAN USN 1120 PPP RDML 克雷格 T. 马丁利 USN 1320 PPP CMDCM(AW/SW/IW) LATEEF N. COMPTON (CS) USN MMM CMDCM(SS/SW/AW/DV) 乔丹·罗萨多罗萨里奥 (MM) USN MMM CMDCM(SW/AW) MARK R. SCHLOSSER (LS) USN MMM CMDCM(SCW/EXW/IW/SW/AW) RAYMOND M. CABRAL (CU) USN MMM CMDCM(AW/SW) RACHEL E. CASTILLO (YN) USN MMM CMDCM(SW/AW/IW/EXW) JAMIE HAMILTON (BM) USN MMM CMDCM(AW/SW/EXW) 弗吉尼亚 L. 霍顿 (YN) USN MMM MACM(SW/AW/IW) 杰西卡 L. 斯奈普 USN MMM 上尉约瑟夫 A. 卡马拉 (1520) USN 1500 M CDR 查德 M. 哈姆 USN 6120 MM EMCM(SW/AW) 曼努埃尔·阿庞特,JR。 USN M EMCM(SW/AW) 迈克尔·B·彭德格拉夫特,JR。美国海军 M EMCM(SW/AW) HENDERSON E. SUSMERANO 美国海军 M HTCM(SW/AW/EXW) BRIAN N. GOODRICH 美国海军 M HTCM(SW) JAMES R. REAMS 美国海军 M MMCM(SW/AW) JOEY D. ALLEY 美国海军 M MMCM(SW/AW) STEPHEN L. COPELAND 美国海军 M MMCM(SW) ERIK T. JOHNSON 美国海军 M NDCM(DWS/SW/EXW) CHARLES K. PARSONS, JR.美国海军 M NDCM(DSW/EXW) ANTHONY P. PIERICK 美国海军 M CAPT ETHAN R. FIEDEL 美国海军 1440 M EMNCM(SS) ANDREW L. ROCKMAN 美国海军 M ETNCM(SS) LEONARD B. WOLF 美国海军 M ETNCM(SS) ZANE A. HORNSBY 美国海军 M MMNCM(SS) NICHOLAS W. BOTTOMS 美国海军 M MMNCM(SS) ANDREW P. CHUPASHKO 美国海军 M MMNCM(SW/AW) CYNTHIA M. HURATIAK 美国海军 M MMNCM(SS) ROBERT L. PERRY, JR. 美国海军 M CAPT DAVID M. JAYNE 美国海军 5100 M CDR NICHOLAS E. PECCI 美国海军 6490 M CBCM(SCW/EXW) LOUIE ALVAREZ, JR. (SW) 美国海军 M
图4。(a)在室温下测量的Pr 4 Ni 3 O 10的XRD模式,外部压力增加到75.0 GPa。X射线波长λ为0.6199Å。(b)在2.2 GPa时,Pr 4 Ni 3 O 10的典型Rietveld精炼。实验和计算的模式分别由黑星和红线指示。图形底部显示的实线是残余强度。垂直条表示PR 4 Ni 3 O 10在P 2 1 / A空间群中的Bragg反射的峰位置。(c)在24.2 GPA时,典型的Rietveld Pr 4 Ni 3 O 10的细化。实验和计算的模式分别由黑星和红线指示。图形底部显示的实线是残余强度。垂直条表示Pr 4 ni 3 O 10在I 4 /mmm空间组中的Bragg反射的峰位置。(d)(110),(004),(11 4ത),(114),(024)和(22 1ത)峰位置在从Rietveld细化结果中提取的压力下的峰位置的演变。(e)晶格参数a,b和c的压力依赖性在p 2 1 / a(黑色)和i 4 / mmm(红色)空间组中从同步XRD XRD结果中提取的PR 4 Ni 3 O 10。(f)Pr 4 Ni 3 O 10在P 2 1 / A(黑色)和I 4 / MMM(红色)空间组中的体积依赖性。p 2 1 / a相位的三阶桦木拟合方程从2.2 GPa到75.0 GPa,而I 4 / mmm相位为13.7 GPa至75.0 GPa。