大规模氢产生的进步及其通过电催化水分裂的应用在很大程度上取决于发展高度活跃的廉价且有效的电催化剂的进展,以氧气进化反应(OER),这继续带来重大挑战。在此,我们准备使用嵌入的铁(Fe)和锰(Mn)纳米颗粒的GO@Zif- 67@mnfe,上面是用含有Zeolitic Imidazy框架(ZIF-67)装饰的石墨烯(GO)上的纳米颗粒(GO)。预先准备的GO@ZIF-67@MNFE催化剂表现出显着的电催化活性,低电位的低电势仅为236 mV,目前的密度为10 mA CM - 2,小型TAFEL斜率为55.7 mV dec-1的小型TAFEL斜率为1.0 mV,并且在1.0 M KOH ElectroleTe中可耐用。此外,我们进行了一项系统研究,以使用密度功能理论(DFT)计算来研究ZIF-67,ZIF-67@MN,ZIF-67@FE和ZIF-67@FE和ZIF-67@MNFE的电催化OER活性。实验和DFT计算结果表明,将Fe和MN引入ZIF-67通过减少活化的能量屏障和加速动力学来提高OER性能。这项研究提出了一种有前途的策略和合理的设计方法,用于利用ZIF衍生物进行水分割的多金属催化剂。
采用简单的化学氧化法在优化的实验条件下制备 MnFe 2 O 4 磁性纳米粒子 (MNPs)。通过在化学反应过程中引入铁离子作为尺寸减小剂来减小粒径。MnFe 2 O 4 MNPs 的饱和磁化强度在 45 到 67 emu/g 之间调整。透射电子显微镜 (TEM) 显微照片证实了粒度分布的变化。用较高浓度的铁离子制备的较小尺寸 MnFe 2 O 4 MNPs 实现了 415 F/g 的最高比电容。结果表明,铁离子可用于通过化学氧化法控制铁氧体的尺寸,并且尺寸减小的 MnFe 2 O 4 MNPs 可能是电化学超级电容器应用的合适选择。2020 Elsevier BV 保留所有权利。
高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
具有化学配方MNFE 2 O 4的锰铁氧体纳米颗粒已通过低温化学降水方法合成。使用X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDX)研究纳米粒子的结构和光学特性,傅立叶变换型非红外光谱(FTIR)和UV-vis-visible-visible-visible-vis-visible-visible Absoptignptimptignptimptimptryptimptigptryptryptrepproscophy。XRD确认准备样品的纯尖晶石相的形成。所有观察到的峰对应于具有JCPDS卡编号74-2403的锰铁氧体的标准衍射模式。从XRD数据中,计算出平均体质大小,发现为27.40 nm。FTIR光谱显示了尖晶石铁氧体的特征带。形态。元素组成及其相对比率由EDAX给出,并被发现与其初始计算值一致。紫外吸收光谱显示可见范围内的特征吸收和从紫外可见的吸收数据中确定了制备样品的带隙。mnfe 2 O 4纳米颗粒具有1.4 eV的狭窄带隙,可能在污染物的光催化降解中应用。简单的共沉淀方法被证明是合成纯锰铁氧体纳米颗粒的有效方法。版权所有©2017 VBRI出版社。关键字:共凝结法,锰铁氧体,XRD,带隙,SEM。简介
磁性纳米粒子用途广泛,是一种很有前途的创新药物靶向方法,有助于提高疗效。通过应用交流磁场优化磁性纳米粒子将增强细胞毒性药物在目标区域的释放,同时防止对健康组织的影响。本文介绍了一项研究,描述了锰铁氧化物 (MnFe 2 O 4) 磁性纳米粒子的开发,该粒子在直流磁场中使用阿霉素对 T47D 细胞具有治疗作用。它还介绍和剖析了磁性纳米粒子的核心、其应用以及可用于增强药物向局部部位输送的设计方法的细分。此外,它通过数学建模展示了一种综合技术,并讨论了这些独特的药物载体磁性纳米粒子的交流敏感性。
缩写:5-FU,5-氟尿嘧啶;AA-CoA,花生四烯酸辅酶 A;ABCC1,ATP 结合盒,C 亚家族(CFTR/MRP),成员 1;ACC,无定形碳酸钙;ACLS4,酰基辅酶 A 合成酶家族 4;AdA-CoA,肾上腺酸辅酶 A;ALDH,醛脱氢酶;AML,急性髓细胞白血病;APC,抗原处理细胞;ARE,抗氧化反应元件;ART,青蒿素;BAX,BCL-2 相关 X 蛋白;BCL-2,B 细胞淋巴瘤 2;BTIC,脑肿瘤起始细胞;CBR,临床受益率;CLL,慢性淋巴细胞白血病;CNSI-Fe(II),碳纳米颗粒负载铁;CQ,氯喹;CRPC,去势抵抗性前列腺癌; CSC,癌症干细胞;CTL,细胞毒性 T 淋巴细胞;CuET,二乙基二硫代氨基甲酸铜 (II);DAMP,损伤相关分子模式;DFO,去铁胺;DHA,双氢青蒿素;DLAT,丙酮酸二氢硫酰赖氨酸残基乙酰转移酶成分;DMT1,二价金属转运蛋白 1;DOX,阿霉素;DRD2,多巴胺 D2 受体;DSF,双硫仑;EGFR,表皮生长因子受体;EMT,上皮-间质转化;ER,内质网;ETO,依托泊苷;FDX1,铁氧还蛋白 1;FER-1,铁抑制蛋白 1;FMN,基于框架的纳米剂;FPN1,铁转运蛋白 1;FTH1,铁蛋白重链 1; FTL1,铁蛋白轻链 1;GPX4,谷胱甘肽过氧化物酶 4;GSH,谷胱甘肽;GSS,谷胱甘肽合成酶;H 2 O 2,过氧化氢;HNC,头颈癌;HO-1,血红素加氧酶-1;ICD,免疫细胞死亡;ICIs,免疫检查点抑制剂;IDH1,异柠檬酸脱氢酶 1;IFN-γ,干扰素-γ;IREB2,铁反应元件结合蛋白 2;IREs,铁反应元件;IRP-2,铁调节蛋白 2;IRPs,铁调节蛋白;JAK,Janus 酪氨酸激酶;KEAP1,kelch 样 ECH 相关蛋白 1;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;LA,硫辛酸; LC3II,微管相关蛋白 1 轻链 3α;LDH,乳酸脱氢酶;LiMOFs,锂基金属有机骨架;LIPRO-1,利普司他丁 1;LOX,脂氧合酶;LPCAT3,溶血磷脂酰胆碱酰基转移酶 3;MDA,丙二醛;MFC-Gem,载吉西他滨的碳质纳米粒子;MGMT,甲基鸟嘌呤甲基转移酶;MMNPs,磁性介孔二氧化硅纳米粒子;MMP-2,金属蛋白酶-2;MnFe 2 O 4 ,锰铁氧体;mRNAs,信使 RNA;NEPC,神经内分泌前列腺癌;NF- κ B,活化 B 细胞的核因子 κ 轻链增强子;NFS1,半胱氨酸脱硫酶;NK,自然杀伤细胞; NOX,NADPH 氧化酶 1;NRF2,核因子红细胞 2 相关因子 2;NSCLC,非小细胞肺癌;OC1,耳蜗毛细胞;OS,总生存率;P62,隔离小体 1;PET,正电子发射断层扫描;P-GP,P-糖蛋白;PCC,持久癌细胞;PCN(Fe) MOFs,Fe 3 + 卟啉金属有机骨架上的 PEG;PD-L1,程序性死亡配体 1;PDAC,胰腺导管腺癌;PEG,聚乙二醇;PGE2,前列腺素 E2;PGRMC1,孕酮受体膜成分 1;PHPM,ROS 敏感聚合物;PTX,紫杉醇;PUFA,多不饱和脂肪酸;PUFA-OOH,磷脂多不饱和脂肪酸过氧化物;RIPK-1/2/3,受体相互作用丝氨酸/苏氨酸蛋白激酶 1/2/3;ROS,活性氧;RR,反应率;siRNA,小干扰 RNA;siSLC7A11,SLC7A11 siRNA;SLC3A2,溶质载体家族 3 成员 2;SLC40A1,溶质载体家族 40 成员 1;SLC7A11,溶质载体家族 7 成员 11;STAT1,信号转导和转录激活因子 1;TAM,肿瘤相关巨噬细胞;TCA,三羧酸循环;TFR,转铁蛋白受体;TME,肿瘤微环境; TMZ,替莫唑胺;TP53,细胞肿瘤抗原 p53;TRADD,肿瘤坏死因子受体 1 型相关死亡结构域蛋白;TTP,进展时间;US FDA,美国食品药品管理局;UTRs,非翻译区;VDAC,电压依赖性阴离子通道;xCT,谷氨酸-胱氨酸反向转运蛋白;Z-VAD-FMK,羧苄氧缬氨酰丙氨酰天冬氨酰-[O-甲基]-氟甲基酮;γ-GCS,γ-谷氨酰半胱氨酸合成酶。 * 通讯作者。电子邮箱地址:mateusz.kciuk@biol.uni.lodz.pl (M. Kciuk)。