图 3 | MCF-7 细胞的 SIM 成像。a,未经处理的细胞和用 cal@(DCA 5 - UiO-66) 和 cal-TPP@(DCA 5 -UiO-66) 处理 8 小时的细胞的图像;线粒体为红色,MOF 为绿色,细胞核为蓝色;白色箭头表示线粒体。b,使用 Cell Profiler 软件显示线粒体形状分析的图像。上行,未经处理的细胞;下行,与 cal-TPP@(DCA 5 -UiO-66) 孵育 8 小时后的细胞。c,不同处理对线粒体偏心率的影响。结果显示平均偏心率至少为 200 个线粒体。误差线表示平均值的标准误差。使用单因素方差分析和 Tukey 多重比较检验来评估统计学显着性。
抽象理性设计的多晶型体系结构用于增强光动力学疗法(PDT),由于它们在轻度介导的活性产生的活性氧物种上具有巨大潜力,因此最近几年引起了显着的关注。但是,结构设计与其PDT性能之间仍然存在差距。This tutorial review provides a historical overview on (i) the basic concept of PDT for deeply understanding the porphyrin-mediated PDT reactions, (ii) developing strategies for constructing porphyrinic architectures, like nanorings, boxes, metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), vesicles, etc., where we classified into the following three类别:多晶林阵列,卟啉框架和其他卟啉组件,(iii)临床癌症治疗和抗菌感染的各种应用方案。此外,末端部分提到了有关临床PDT应用的卟啉架构创新的现有挑战和未来观点。更重要的是,具有原子质结构的卟啉式纳米材料为研究结构与PDT Outs之间的关系提供了理想的平台,设计个性化的“一对一” Theranostic Agents,以及在多种生物医学领域中的普及和应用。
在过去的二十年中,金属有机框架(MOF)已成为广泛开发的多孔材料类别,并越来越被认为是基于膜的CO 2分离的有希望的候选者。这种潜力主要源于故意自定义其结构和功能以增强与客人分子相互作用的能力。在这项研究中,我们探讨了基于卟啉的MOF的MOF-525作为混合基质膜(MMM)中的纳米填料,由6fda- dam(6fda:6fda:2,2-2-二甲基苯基)(3,4-二甲基苯基)六氟丙烷氨基丙烷硫氨酸酯dian Hydridiide; CO 2 /N 2和CO 2 /CH 4分离的聚合物二氨基苯)分离。之所以选择此特定的MOF,是因为有可能将其卟啉环金属量化以量身定制CO 2分子与MOF框架之间的相互作用。结果,无需使用很高的纳米颗粒载荷而无需使用很高的纳米颗粒加载而无需使用金属化的MOF-525的MMM的CO 2 /N 2和CO 2 /CH 4分离性能。与裸露的聚合膜和2 wt%的MOF-525 mmm相比,可以观察到2 wt%金属的MOF-525 MMM的膜渗透性和选择性提高约20%。对MMM的气体传输特性的进一步分析表明,改进主要是由于MMM中增强的CO 2溶解度以及金属化的MOF-525和CO 2分子之间的相互作用改善。但是,还发现2和5 wt%是最佳载荷值,高于该值,高于该值,MOF纳米颗粒之间的界面缺陷和由粒子聚集引起的聚合物开始出现,从而降低了膜性能。也通过分子模拟证实了这一点,其中尤其是在高颗粒载荷时观察到麦克斯韦模型上的一些高估,这表明非选择性空隙的凝聚力和堆积。尽管如此,我们在这项研究中已成功地显示了在MMM中使用金属的卟啉MOF进行CO 2分离的高效率和效率,因为仅需要相对较低的颗粒载荷(约2 wt%)才能改善膜性能。
抽象的金属有机框架为几乎每个主要行业的含义都提供了高性能材料的构建材料的各种景观。具有这种多样性茎,具有各种途径和中间体的复杂结晶机制。结晶研究一直是无数生物学和合成系统发展的关键,而MOF也不例外。本综述概述了用于破译MOF结晶的当前理论和基本化学。然后,我们讨论如何将固有和外在合成参数用作调节结晶途径以使用精细调整的物理和化学特性生产MOF晶体的工具。提供了实验和计算方法,以指导分子和大量尺度上MOF晶体形成的探测。最后,我们总结了该领域的最新进展以及我们对MOF结晶的令人兴奋的未来的前景。
标题:简化和扩大使用机械化学作者合成的硼咪二唑酯框架(BIF)范围TomislavFriščićA,B * A McGill University的化学系,801 Sherbrooke St. W. H3A 0B8加拿大蒙特利尔。e-邮件:tomislav.friscic@mcgill.ca b frqnt Quebec高级材料中心(QCAM/CQMF),加拿大蒙特利尔,加拿大C CADADIFF大学,加拿大大学,公园大楼,加迪夫CF10 3AT公园广场,英国d,英国d,d pasciff cf10 3at,d pastef,d cf10 d。e Concordia大学生物化学与化学系,7141 Sherbrooke St. W. H4B 1R6加拿大蒙特利尔。 f国际纳米技术研究所,化学系西北大学,2145 Sheridan Road,60208 Sheridan Road,60208 Evanston,伊利诺伊州,伊利诺伊州,伊利诺伊州伊利诺伊州,主要文本机械化学1-7,已成为一种多功能方法,用于合成和高级材料的合成和材料,包括Nananoparticle Systems 8-10和金属eRebressing(包括金属型号)(包括金属型号)(Mofs-Er-Organigics)(Mofs-Erganigy),使用常规的基于解决方案的技术获得。 16–18的机械化学技术,例如球铣削,双螺钉挤出19和声学混合20,21,简化和先进了多种MOF范围的合成,允许使用简单的起始材料,例如金属氧化物,氢氧化物或碳酸盐或碳酸盐,氢氧化物或碳酸盐,在房间温度和较高的表面上,较高的表面上的较高的表面,均等的,均质的稳定性,均可稳定地及其稳定,并稳定地,稳定性,稳定性,稳定性,并稳定地及其稳定性,并在稳定的稳定性,并且稳定的范围是稳定的。同行。e Concordia大学生物化学与化学系,7141 Sherbrooke St. W. H4B 1R6加拿大蒙特利尔。f国际纳米技术研究所,化学系西北大学,2145 Sheridan Road,60208 Sheridan Road,60208 Evanston,伊利诺伊州,伊利诺伊州,伊利诺伊州伊利诺伊州,主要文本机械化学1-7,已成为一种多功能方法,用于合成和高级材料的合成和材料,包括Nananoparticle Systems 8-10和金属eRebressing(包括金属型号)(包括金属型号)(Mofs-Er-Organigics)(Mofs-Erganigy),使用常规的基于解决方案的技术获得。16–18的机械化学技术,例如球铣削,双螺钉挤出19和声学混合20,21,简化和先进了多种MOF范围的合成,允许使用简单的起始材料,例如金属氧化物,氢氧化物或碳酸盐或碳酸盐,氢氧化物或碳酸盐,在房间温度和较高的表面上,较高的表面上的较高的表面,均等的,均质的稳定性,均可稳定地及其稳定,并稳定地,稳定性,稳定性,稳定性,并稳定地及其稳定性,并在稳定的稳定性,并且稳定的范围是稳定的。同行。24,25机械化学在MOF合成和发现中的优势使我们解决了合成硼咪唑酸盐框架(BIF)的可能性,26一种是一种有趣但不足以开发的微孔材料,类似于Zeolitic imidazaly的框架(Zifs),27-29 – 27-29 – 29 – 29 – 29 – 29 – 29 – 29-硼(III)和单价Li +或Cu +阳离子作为节点。尽管BIFS提供了一个有吸引力的机会来访问分子量较低的微孔MOF,尤其是在基于Li+和B(III)中心的“超轻”系统的情况下,这种材料家族在很大程度上尚未探索 - 可能是由于需要在n -butylithium中使用溶液中的溶液环境,因此需要进行严格的综合条件。29现在,我们展示如何切换到机械化学环境使锂和铜(i)基于铜(i)的BIF迅速制备(即,一个小时或更短的时间),没有升高的温度或散装溶剂,以及易于获得的固体反应物,例如氢氧化物和氧化物。虽然机械化学准备的BIF表现出明显高的表面积面积,而机械化学则可以将这种类别的材料扩展到以前未报告的Ag +节点。与基于li +或Cu +的bifs同源性引入,但包括Ag +离子,可以对其稳定性进行定期密度功能功能理论(DFT)评估。这表明,随着四面体节点的稳定性(SODALITE拓扑结构(SOD)开放BIF相对于封闭式包装的Diaondoid(DIA)拓扑多形状,改善了较重的元素。
软机器人技术是机器人技术的一个特定子领域,涉及使用与生物体中类似的高柔顺性材料构建机器人。软机器人技术很大程度上借鉴了生物体移动和适应周围环境的方式。与用刚性材料制成的机器人相比,软机器人可以提高完成任务的灵活性和适应性,并在与人类一起工作时提高安全性。这些特性使其在医学和制造业领域具有潜在的用途。为了了解软机器人技术在研究中的普遍性,截至 2021 年 4 月,在 Web of Science 数据库中对关键词“软机器人”进行简单搜索,结果超过 6.6k 个条目,自 2010 年代初开始激增,并且仍然受到越来越多的关注(图 1)。本书的目的是全面概述软机器人技术的广泛领域以及化学工程如何参与其中。读者将了解软机器人的基础知识,并了解软机器人在不同工业和研究领域最突出的应用。重要的是,本书还将强调在大型产品中实施软机器人所面临的挑战和问题。全书分为七章。第一章讨论软机器人的主要原理,特别是软微机器人。Bernasconi 博士(第 1 章)介绍了近年来实施的新功能和驱动策略。本章介绍了使用软物质制造的微型机器人的材料、制造技术、驱动策略和应用,重点关注一些特殊类型的材料,如生物实体和硬软混合物。Costa Angeli 博士(第 2 章)概述了可用于软机器人的打印技术和可打印材料。本文还重点介绍了这些技术在工业中的应用所需要解决的主要挑战。 Sacchetti 教授(第 3 章)进一步阐述了该领域中金属有机骨架 (MOF)。金属中心和有机骨架之间的配位产生了复杂的组装体,这些组装体可以从一维结构发展为配位聚合物。本章将简要说明 MOF 在化学物质传感中的应用。MOF 与
多孔协调聚合物(PCP)12和金属 - 有机框架(MOF)。13 - 17与理想药物释放材料相关的障碍很复杂,并且根据目标药物和给药途径而变化(例如,口服,静脉内,皮下,透皮或眼部)。2因此,创建材料始终纳入所需的治疗量并控制药物的释放率仍然是一个巨大的挑战。许多药物释放材料,从非晶聚合物分散剂到金属 - 有机框架,相同的基本问题:药物吸收和释放主要是通过基于不同用途的机制来完成的。18,依赖于药物载荷和释放的依赖,从而导致对药物释放动力学的控制不佳,并可能导致“爆发释放”。在这种情况下,该药物迅速分散到周围的培养基中,o gen进行过多的治疗剂量并有可能达到有毒剂量浓度。6