论文还展示了近期的突破性成果,展示了窄带高功率 DFB 源,以及半导体光放大器 (SOA) 增益芯片的初步结果。此外,论文还强调,BluGlass 已成功展示了集成 GaN 主振荡器功率放大器 (MOPA),该放大器在单一空间模式下实现了 750 mW 的功率。集成设备用与半导体光放大器对齐的快轴和慢轴透镜取代单模激光器,在减小尺寸和复杂性的同时提高了功率。BluGlass 首席执行官 Jim Haden 表示:“我们在可见光 GaN 激光器、单模、近单频、MOPA 和光子集成解决方案方面的领先进展是革命性行业的关键第一步,包括航空航天、国防、量子计算和生物医学应用。” BluGlass 正在扩展可见激光能力的范围,从紫色到蓝绿色的 DFB 波长的增加、世界一流的噪声抑制以及单模激光器与功率放大器的集成,在单一空间模式下可实现 750 mW 的蓝光,这些都证明了我们世界领先的团队所开创的惊人创新。“我们不断增长的战略能力使 BluGlass 能够利用量子传感、通信和计算等令人兴奋的增长市场。这些进步将使我们的客户能够通过创建局部量子解决方案来解决复杂问题,例如大气激光雷达检测晴空湍流、水下通信和激光雷达以及 GPS 欺骗和干扰。
▪“包装光子系统包装的动机(PSIP)”▪包装概念▪MOPA系统作为一个示例的实验结果▪包装设计▪玻璃结构(金属布线,空腔,滑动,镜面,镜面,镜面)▪层堆叠和密封件,划分•逐步划分•进一步划分•进一步划分•进一步的构建•▪进一步的构建▪▪▪▪▪▪•▪•▪进一步的构建▪▪▪▪▪▪•▪•▪•▪•平面外耦合▪纤维耦合▪通用图片测试平台▪2PP,用于印刷微观磁带和光子线键▪取回回家消息
合适的激光源的可用性是未来空间任务的主要挑战之一,以准确测量大气C0 2。欧洲项目的主要目标是证明在综合路径差异吸收(IPDA)激光雷达系统中,将全症状导向器激光源用作太空传播激光发射机的可行性。我们在这里提出了提议的发射器和系统体系结构,初始设备设计以及执行的模拟结果,以估算功率,光束质量和光谱属性的源需求,以实现所需的测量精度。激光发射器基于两个Ingaasp/INP单片主振荡器功率放大器(MOPAS),可提供靠近1.57 URN所选吸收系的ON和OFF波长。每个MOPA都由频率稳定的分布式反馈(DFB)主振荡器,调制器部分和优化的锥形半导体放大器组成,以最大程度地提高光学输出功率。设计符合空间的激光模块的设计包括光束形成光学元件和热电冷却器。建议的系统使用随机调制连续波(RM-CW)方法将常规的脉冲源用调制的连续波源代替,从而使设计的半导体MOPA适用于此类应用。已定义了获得1 ppmv的C0 2检索精度和少于10米的空间分辨率的系统要求。信封表明所需的平均功率是几瓦,主要噪声源是环境噪声。
摘要 本文研究了单片二极管泵浦掺铊光纤激光器,用作 Ho-YAG 系统的泵浦源。通过优化掺杂光纤长度和腔体参数,腔体设计可实现高光-光效率和对放大自发辐射 (ASE) 引起的寄生振荡的稳定性。通过实验,我们已演示了 1907.7 nm 光纤激光器,其输出功率为 79 W,来自 10/130 μm 掺铊双包层光纤,同时具有高亮度和辐射密度。激光腔的斜率效率约为 55%,ASE 抑制 > 40 dB,近衍射极限光束质量为 M 2 ~1.07。关键词:掺铥光纤激光器,中红外激光器,寄生振荡 1.引言 与体晶体替代品相比,光纤激光器具有独特的紧凑、更可靠、坚固、高效、功率可扩展和高亮度光源[1–4]。掺铥光纤激光器 (TDFL) 具有在 1.8-2.1 μm 范围内发射的宽增益光谱,有利于从工业、遥感、医疗到国防等新兴领域的许多应用。特别是,与 1 μm 替代品相比,2 μm 激光源具有更少的大气散射畸变和更低的热晕,有利于远程激光雷达、自由空间光通信和定向能系统 [5]。此外,在材料加工(切割、焊接、钻孔)行业,虽然 1 μm 激光器经常用于金属加工,但 2 μm 激光器具有明显更高的吸收峰,可以更有效地加工塑料和玻璃材料等非金属 [6]。类似地,红外和中红外区附近的强水吸收峰使其能够在医疗应用中使用 1.9-2.1 μm 激光源,特别是在精确组织手术和碎石术中 [7-8]。另一方面,1.9 μm 左右的高亮度 Tm 掺杂光纤激光器 (TDFL) 是固态激光系统 (如 Ho-YAG) 的优异泵浦源,可实现高量子效率,可用于 TDFL 的带内和芯泵浦,并有助于参数频率转换为中红外和 THz 区 [9-11]。得益于商用发射波长为 ~790 nm 的半导体激光二极管 (LD)、多包层光纤技术和交叉弛豫带来的高量子效率的进步,大量发射波长为 ~2 μm 的高功率 Tm 掺杂光纤激光器和放大器已成功演示 [12]。在这种方法中,MOPA 系统采用芯径高达 25 μm 的大模面积 (LMA) 光纤,旨在实现约 2.05 μm 处 1kW 以上的输出功率 [13]。然而,与多级放大器系统相比,高功率振荡器可最大限度地降低成本和复杂性,从而提供更高的稳定性、稳健性和精确控制。据报道,工作在2 μm以下的直接二极管泵浦TDF振荡器的功率水平和波长均有所增加,例如在2050 nm处为170 W和300 W [14-15],在1967 nm处为278 W [16],在1950 nm处为185 W [17]。