人工智能和机器学习 (AIML) 辅修课程是一个包含三门课程的辅修课程。它对所有 VSB 学生开放,课程包括构建原型智能系统、自然语言处理、专家系统、监督和无监督学习、机器人技术以及构成广泛 AI 领域的其他领域。
Contino 是一家专业服务公司,通过采用数据平台、数据科学企业 DevSecOps 和云原生计算,帮助组织实现可衡量的转型。我们帮助客户构建自己的创新引擎,使他们能够更快、更高效地提供更好的解决方案,作为其数字化转型目标的一部分,并减少对外部提供商的依赖。我们与所有客户采用双重交付和技能提升方法。这意味着,除了帮助您完成最具战略性的项目外,我们还将专注于技能转移和提高您自己的数据管理和利用、云、DevSecOps 和相关最佳实践(如 CI/CD、自动化和微服务的采用)的能力。
2023 年 9 月,加拿大政府发布了《生成式人工智能使用指南》,其中为加拿大政府机构及其员工提出了建议。与近年来各组织发布的其他类似文件一样,该文件就透明度提出了建议,指出每当使用生成式人工智能生成内容时,都应告知读者“发给他们的消息是由人工智能生成的”。虽然本指南没有专门针对机器翻译的情况,但它确实提到翻译是生成式人工智能的潜在应用。因此,自然而然地出现了一个问题:无论在哪里使用机器翻译的文本,都应明确标记为人工智能生成的内容吗?在本立场文件中,我们详细研究了这个问题,目的是提出关于机器翻译的明确指导方针,不仅针对政府机构,也针对任何使用机器翻译技术的人。我们的主要结论是,机器翻译的文本确实是 AI 生成的内容。因此,应在使用它的所有地方明确标记。我们就这种标记可能采取的形式提出建议。我们还研究了在什么条件下可以删除或省略 MT 标记。
摘要 我们正处在巨变的边缘,这是一个历史抉择和机遇的关键时刻。未来五年可能是人类历史上最好的五年,也可能是最坏的五年,因为我们拥有创造最基础的通用技术(GPT)的全部力量、技术和知识,而这项技术可能会彻底颠覆整个人类历史。最重要的通用技术是火、轮子、语言、文字、印刷机、蒸汽机、电力、信息和电信技术,而真正的人工智能技术将超越它们。我们的研究涉及为何以及如何在未来五年内设计和开发、部署和分发真正的机器智能或真正的人工智能或真正的超级智能(RSI)。RSI 的整个构思分为三个阶段,历时约三十年。跨人工智能的第一个概念模型于 1989 年发布,涵盖了所有可能的物理现象、影响和过程。 1999 年开发了更扩展的 Real AI 模型。2008 年提出了超级智能的完整理论,包括现实模型、全局知识库、NL 编程语言和主算法。RSI 项目最终于 2020 年完成,一些关键发现和发现已在欧盟人工智能联盟/Futurium 网站上发表,共计 20 多篇文章。RSI 具有统一的世界元模型(全局本体论)、通用智能框架(主算法)、标准数据类型层次结构、NL 编程语言,可通过智能处理数据(从网络数据到现实世界数据)与世界进行有效交互。基本成果包括技术规范、分类、公式、算法、设计和模式,均作为商业机密保存,并记录为《企业机密报告:如何设计人机超级智能 2025》。作为欧盟人工智能联盟的成员,作者提出了人机 RSI 平台作为跨国欧盟-俄罗斯项目的关键部分。为了塑造一个智能和可持续的未来,世界应该投资于 RSI 科学和技术,因为跨人工智能范式是通往包容、仪器化、互联和智能世界的道路。
最后,Darktrace 还使用各种机器学习技术来自动执行调查工作流程中执行的重复且耗时的任务。通过分析专家网络分析师如何与 AI 的输出进行交互(例如他们如何分类威胁警报以及他们如何使用第三方来源),Darktrace 能够复制这些专家行为并自动执行某些分析师功能。这使得所有成熟度级别的分析师都能进行越来越高效和简化的调查。它还为安全团队提供了他们所需的关键时间,使他们能够专注于更高价值的战略工作,例如管理风险和专注于更广泛的业务改进。
司法管辖章节 澳大利亚 Jordan Cox, Aya Lewih & Irene Halforty, Webb 62 奥地利 Günther Leissler & Thomas Kulnigg, Schönherr Rechtsanwalte GmbH 75 比利时 Steven de Schrijver, Astrea 80 巴西 Eduardo Ribeiro Augusto, SiqueiraCastro Lawyers 93 保加利亚 Grozdan Dobrev & Lyuben dev, DOBREV & LYUTSKANOV Law Firm 98 加拿大 Simon Hodgett, Ted Liu & André Perey, Osler, Hoskin & Harcourt, LLP 107 中国 Susan Xuanfeng Ning, Han Wu & Jiang Ke, King & Wood Mallesons 123 芬兰 Erkko Korhonen, Samuli Simojoki & Kaisa Susi, Borenius Attorneys Ltd 134 法国 Weber & Jean-Christophe Ienné, ITLAW Lawyers 145 德国迈克尔·拉斯和博士Markus Sengpiel Luther Real Estate Company mbH 158 希腊 Victoria Mertikopoulou、Maria Spanou 和 Natalia Soulia Kyriakides Georgopoulos Law Firm 169 印度 Divjyot Singh、Suniti Kaur 和 Kunal Lohani、Alaya Legal Lawyers 183 爱尔兰 Kevin Harnett 和 Claire Morrissey、Maples Group 198 意大利 Massimo Donna 和 Chiara chi、Paradigm – Law & Strategy 211 日本 Akira Matsuda、Ryohei Kudo 和 Haruno Fukatsu、Iwata Godo 221 韩国 Won H. Cho 和 Hye In Lee、D'LIGHT Law Group G Legal – Toncescu 和 SPARL Associates 252 新加坡 Lim Chong Kin、Drew & Napier LLC 264 瑞士András Gurovits,Kraft Frey Ltd. 所有者276
乔治奥斯·扬纳卡基斯 马耳他大学数字游戏研究所,马耳他姆西达 摘要 数字游戏作为教育的新范式已具有重要意义。数字游戏人人都可以访问且价格合理,并为大规模教学和学习提供了机会。近年来,人们对数字游戏的兴趣日益浓厚,以支持大学预科(K-12)学校的计算思维和编程。人工智能(AI)和机器学习(ML)是一个快速发展的领域,在过去几年中吸引了越来越多的学习者。虽然数字游戏和AI/ML的融合对于教学和学习研究人员来说是一个重要且具有挑战性的领域,但该领域尚未进行过文献综述。这项工作的目的是回顾最近对支持AI和ML教育的游戏的研究。经过彻底的搜索,我们选择了相关的论文和游戏并将其纳入我们的定性内容分析。在此综述的基础上,我们概述了相关的研究论文和游戏,并展示了不同的游戏如何提供独特的机会来教授人工智能和机器学习中的许多不同概念和主题。 关键词:教育游戏、人工智能教育、机器学习教育、文献综述 1.简介 在过去的几年里,数字游戏在计算机科学(CS)和信息技术(IT)教育中越来越受欢迎(Harteveld 等人,2014 年;Kordaki 和 Gousiou,2016 年)。数字游戏一直是加强 CS 教育的几种流行方法。在 K-12 学校,有一些课程让学生参与玩游戏,其中包括必须解决的任务和问题才能进步(Vahldick 等人,2014 年),或鼓励学生使用可视化和基于块的编程环境开发游戏
但当错误决策的潜在后果很严重时,就需要更强的态势感知能力。在这种情况下,人类可以充当哨兵,依靠他们的经验来管理风险情况。虽然算法可能擅长识别定义不明确的过程,但也可能需要有经验的人来训练人工智能系统,担任教练的角色。在复杂程度和风险程度很高的情况下,人机交互的需求将达到顶峰,成为一种相互学习的关系。在这种情况下,人类专家是长期、点对点关系中的同伴。