单个变量的函数:Rolle的定理和Lagrange的平均值定理(MVT),Cauchy的MVT,Taylor's和Maclaurin的系列,Asymptotes&Curvature(Cartesian,Polar,极性形式)。(8) Functions of several variables: Function of two variables, Limit, Continuity and Differentiability, Partial derivatives, Partial derivatives of implicit function, Homogeneous function, Euler's theorem and its converse, Exact differential, Jacobian, Taylor's & Maclaurin's series, Maxima and Minima, Necessary and sufficient condition for maxima and minima (no proof), Stationary points, Lagrange's乘数的方法。(10)序列和序列:序列,序列的限制及其性质,一系列积极术语,收敛的必要条件,比较测试,D Alembert的比率测试,Cauchy的根测试,交替的序列,Leibnitz的规则,绝对和条件收敛。(6)积分计算:积分计算的平均值定理,不正确的积分及IT分类,beta和γ功能,在皇家和极地坐标,伦理固体的体积和表面积,皇家和极地的体积和表面积的面积和长度通过双重整合的体积,体积作为三个积分。(10)矢量计算:矢量值及其不同,线路积分,表面积分,体积积分,梯度,卷曲,弯曲,散射,格林定理(包括向量形式),Stokes的定理,Gauss的Divergence定理及其应用。(10)
讲师助教姓名 Paweena Sukhawathanakul McKenna Knox 办公室 Cornett A260 - 电子邮件 paweenas@uvic.ca mckennaknox@uvic.ca 办公室电话 (250) 721-7523 - 办公时间 星期一 1:30-2:30pm 预约上课时间:星期一和星期四上午 10:00 – 晚上 11:20 日期范围:2024 年 1 月 6 日至 2025 年 4 月 3 日地点:MacLaurin 大楼 A144 室必修文本:Steinberg,Laurence (2023)。青春期(第 13 版)。麦格劳希尔教育:纽约。课程网站:可通过 UVic Brightspace 学习管理系统课程描述获取。青春期代表从童年到成年的过渡,其特点是显著的生物、认知和社会变化,但青春期的定义特征可能因社会而异。本课程概述了青春期的关键发展,包括神经和身体发育、社会关系和情绪过程的变化、精神病理学以及这些发展发生的文化背景。学习目标。学生将能够:
致谢 我们感谢美国国家可再生能源实验室 (NREL) 的 Katy Schneider、Brian Sergi、Galen Maclaurin、Whitney Trainor-Guitton 和 Dan Bilello 以及美国能源部的 Patrick Gilman 和 Gage Reber 对本报告内容提供的反馈。我们还要感谢 Jenny Korte 的编辑工作。这项工作由美国国家可再生能源实验室的研究人员完成,该实验室由可持续能源联盟有限责任公司运营,受美国能源部委托,合同编号为 DE-AC36-08GO28308。美国能源部能源效率和可再生能源办公室 (EERE) 太阳能技术办公室(奖项编号 38421)、风能技术办公室和地热技术办公室根据合同编号 DE-EE0009962 提供资金。本文表达的观点不一定代表美国能源部或美国政府的观点。所有错误和遗漏均由作者独自承担。
模块1:矩阵和应用程序 - 矩阵:矩阵操作 - 附加,标量乘法,乘法,转置,伴随及其属性;线性方程和高斯消除,决定因素及其特性的系统;克莱默的统治;向量空间:子空间,线性依赖/独立性,基础,维度,r^n的标准基础,线性变换,线性变换的矩阵,基础和相似性的变化,rank-nullity定理;内部产物空间,革兰氏阴性过程和正统基础,特征值和特征向量,特征多项式,对角线化。模块2:单个变量的差分计算函数:函数和先验函数;限制,连续性和不同性;平均价值定理,泰勒和麦克拉林的定理;参数方程和极坐标。几个变量的函数:部分分化;总分,欧拉的定理和概括;
一元函数微积分:线性和二次近似、误差估计、泰勒定理、无穷级数、收敛测试、绝对和条件收敛、泰勒和麦克劳林级数。多元函数微积分:偏导数、链式法则、隐式微分、梯度、方向导数、全微分、切平面和法线、最大值、最小值和鞍点、约束最大值和最小值、曲线绘制、积分的几何应用、双重积分、面积和体积的应用、变量变换。常微分方程:一阶及高阶微分方程、线性微分方程。具有高阶常数系数、柯西微分方程、参数变异法、联立微分方程。图论:简介、术语、表示、同构、连通性、Wars Hall 算法、欧拉和汉密尔顿路径以及最短路径树。参考文献:
平均值定理的重要性及其应用,评估多个积分,具有物理理解的矢量演算语言,可以处理诸如流体动力学和电磁场等受试者,序列和系列和系列的融合以及傅立叶系列。模块1差分微积分12小时的限制,连续性和不同性;平均值定理,泰勒和麦克劳林的定理,部分分化,总分分化,欧拉的定理和概括,最大值和最小值的几个变量功能,Lagrange的乘数方法;变量的变化 - 雅各布人。模块2积分10小时的微积分基本定理,不当积分,面积的应用,体积。双重和三个积分模块3矢量计算14标量和向量场;向量分化;定向衍生物 - 标量场的梯度;向量场的发散和卷曲 - 拉普拉斯 - 线和表面积分;格林在飞机上的定理;高斯分歧定理;斯托克斯定理。模块4序列和串联10小时
CM-301 Calculus ( 3 + 0 ) Limits & Continuity: Limits, Continuity, Tangent lines & Rate of Change, Sequence and Series: Sequence and Their Divergence and Convergence Test, Introduction to Infinite Series, Taylor and Maclaurin Series, Convergence and Divergence Test for Series: Limit comparison test, Ratio test, Root test, Derivatives: Techniques of differentiation, Chain rule and implicit differentiation, derivatives逆函数,双曲线函数,逆三角和双曲线函数,分化的应用,最大值和最小值单个可变功能的功能,边际分析,边际分析以及使用不确定的形式和l'医院规则,整体构成:riemann积分,整合和整合的序列,差异和整合的序列,依次和整合三角学和双曲线功能,正弦,余弦,割线和切线的功能的整合,部分,三角替代,不当积分,beta和伽玛积分,差异方程,差分方程:微分方程,形成和解决方程,方程,方程,一阶,初始和边界价值,求解一级方程式或求解的各种方程式,确切的既方程式,既有方程式,又有等方程,并依次分离,既有等方程,又有等方程,并依次分离,且既有等方程,又依次,既有等方程式,又依次分离,及以上等方程式,且共同依次,既有方程性,又有方程性的范围。轨迹。非线性一阶方程,信封和单数解决方案
ENGINEERING MATHEMATICS-I Subject Code: BTAG101-22 Matrices: Elementary transformations, rank of a matrix, reduction to normal form, Gauss- Jordon method to find inverse of a matrix, Eigen values and Eigen vectors, Cayley-Hamilton theorem, linear transformation, orthogonal transformations, diagonalisation of matrices, quadratic forms.paq形式,梯形形式,线性方程的解,等级的性质,使用cayley-hamilton定理找到A。差分演算:泰勒和麦克拉林的扩展;不确定形式;曲率,两个或多个自变量的功能,部分分化,均匀函数以及Euler定理,复合函数,总导数,最大值和最小值。整体演算:曲线革命的卷和表面;双重和三个积分,集成顺序的变化,双重积分和三个积分的应用以查找面积和音量。向量计算:向量,标量和向量点函数的区分,向量差异操作员DEL,标量点功能的梯度,矢量函数的差异和卷曲及其物理解释,涉及DEL的身份,二阶差异差异操作员;线,表面和音量积分,Stoke's,Divergence和Green的定理(没有证明)。