随着微观粒子(m 到 nm)布朗碰撞或表面现象成为主导,自推进游泳者的设计、合成和运动控制仍然是该领域的主要挑战。一种有趣的方法是将微电子器件(例如半导体二极管)用作自推进电子游泳者(e-swimmer)。这些设备具有将运动与电子响应(如光发射)耦合的独特功能。[26-28] Velev 等人在外部电场的作用下,通过电渗机制证明了半导体二极管在空气/水界面的运动控制。[26] 此外,电场不仅提供方向控制,还可以打开和关闭这些电子游泳者的电子响应。虽然需要方向控制,但自主运动是理解集体行为的关键。一种有前途的替代方案是设计由连接到微电子器件电端子的自发化学反应驱动的自主电子游泳者。如果所涉及的氧化还原反应选择得当,可以产生足够的电位差来克服开启这些设备所需的阈值电压。在这项工作中,我们引入了这样一种化学电子游泳器,它基于 Mg 和
摘要 - 评估了四个Rebco CC的物理和电气特性:1)theva; 2)上海超越。技术; 3)日本法拉第工厂; 4)藤库拉。为了估算其物理特性,通过删除粘贴在胶带上的聚酰亚胺色带并在预锡后切割胶带来检查每个胶带的分层强度。还通过我们的金属悬挂过程研究了其厚度的均匀性和厚度的均匀性。用于评估其电气性能,在垂直于AB平面的各种外部磁场下在4.2 K下测量其临界电流。在自田77 K的液体氮浴中制造每条胶带的关节样品。在本文中为四个磁带描述了结果。
磁振子学是研究自旋波的物理特性并利用其进行数据处理的科学领域。可扩展至原子尺寸、从 GHz 到 THz 频率范围的操作、非线性和非互易现象的利用、与 CMOS 的兼容性只是磁振子提供的众多优势中的一小部分。尽管磁振子学仍然主要定位于学术领域,但该领域所涵盖的科学和技术挑战范围正在得到广泛研究,许多概念验证原型已经在实验室中实现。本路线图是许多作者共同努力的成果,涵盖了多功能自旋波计算方法、它们的概念构建块以及底层物理现象。特别是,路线图讨论了使用布尔数字数据的计算操作、神经形态计算等非常规方法以及基于磁振子的量子计算的进展。本文由七个大主题部分组成的子节集合组成。每个小节由一位或一组作者准备,并简要描述当前的挑战和研究方向进一步发展的前景。
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
这些是我关于等离子体物理学的讲座的注释,自2014年以来作为牛津大学MMATHPHYS/MSCMTP计划的一部分教授。第一部分包含有关等离子体动力学的讲座,这些讲座构成了“动力学理论”核心课程的一部分。血浆讲座旨在作为该主题概念和方法的总体介绍,以及中性气体动力学(由Paul Dellar教)和引人入胜的颗粒动力学(由James Binney教授,由Jean-Baptiste Fouvry和Chris Hamilton继承,然后是每次提供其自身的讲座。第二部分组装的更高级的部分涵盖了在2020年可怕的三位一体期间,在Covid-19锁定下,在可怕的三位一体学期中首次教授的材料。从这些笔记中提取的摘录也用于我在2017年和2023年的Ecole de physique de physique de physique de physique de ecole de ecole de ecole sessions的讲座中。第三部分是磁性水力动力学的介绍,它是我在2015 - 21年教授的“高级流体动力学”课程的一部分(Paul Dellar涵盖了该课程的另一部分,专门针对复杂的流液)。这些笔记源于两个早期课程:“高级等离子体理论”,在2008年在帝国学院教授,“磁水动力学和湍流”,在2005-06年在剑桥的数学第三课程中任教了三次。最后,第四部分致力于动力学和MHD的婚姻。这些年来,这些讲座已经吸收了很多材料,这并不是所有这些显然是一个好主意,至少在与该主题的第一次相遇时,教书或学习的确是一个好主意。它起源于2013年和2015年的Les Houches讲座(以及Mate kunz和我曾经计划写的KMHD的审查的未完成的草稿),自从Plamen Ivanov and It Dripra上 我已经在小字体中进行了一致的效果,以首次阅读的零件排版,尽管在初始博览会中可能会感到不必要的东西有时会在以后更加重要,技术和/或概念。 我将感谢学生,导师和同情者的任何反馈。我已经在小字体中进行了一致的效果,以首次阅读的零件排版,尽管在初始博览会中可能会感到不必要的东西有时会在以后更加重要,技术和/或概念。我将感谢学生,导师和同情者的任何反馈。
摘要 — 磁性纳米粒子 (MNP) 在许多生物医学应用中是非常有吸引力的组件,特别是作为用于靶向治疗的治疗性磁性微载体 (TMMC)。虽然可以使用外部磁场有效地收集和运输 MNP,但最佳输送方式尚未得到充分研究。在本文中,我们讨论了可变形软磁微型机器人在不同磁场条件下的建模和特性描述。所考虑的微型机器人由浸入不同载体流体中的超顺磁性氧化铁 (SPIO) 组成,并且已经在弱磁场下通过实验表征了其行为。实验结果清楚地表明,观察结果正确地遵循了模型预测。具有可控形状变形的软磁微型机器人由于其特性对环境条件(例如容器尺寸、速度、剪切应力)的适应性而具有巨大的靶向药物输送潜力。
本文探讨了能够达到高温的多磁控管烤箱的设计、制造和性能。首先,模拟了合适的波导,并完成了生产过程。然后,模拟了多磁控管烤箱的拟议设计,并提出了适当的尺寸。据报道,生产的多磁控管烤箱的平均功率密度 (PD) 值为 0.37 mW/cm²,这表明了其性能和效率。该值符合标准,对人体安全。我们研究的主要目的是证明波导可以在烤箱中心达到高温而不会相互影响。在这种情况下,观察到磁控管在单、双、三和四模式下工作时产生的温度在烤箱中心逐渐升高。支持这一点的模拟结果表明 S 21 参数为 -177 dB。我们研究中提出和应用的设计高效、易于生产、对人体安全、成本低,可用于达到高温的商业和学术研究。总体而言,多磁控管烤箱设计被证明是一种成功且实用的解决方案,适用于需要高温的应用,展示了其在工业和研究方面的潜力。这项研究的结果为先进加热技术的开发提供了宝贵的见解,表明高温应用的效率和安全性得到了显著改善。
ABS道目标:研究基线上肢运动障碍水平与运动中风障碍水平的关系与低频重复经颅磁刺激(LF-RTMS)和常规康复治疗的慢性中风患者之间的关系。材料和方法:在这项回顾性研究中,根据基线FUGL-MEYER上肢运动障碍量表(FM-ul)分数,将48名慢性中风患者分为3个亚组:SE- VERE(n = 16),严重至中度(n = 15),以及中度到中间(n = 17)。比较组的运动增益(FM-ul的变化)。结果:在常规康复中,在所有统计学意义的运动中,在所有统计上显着的运动增长中,在上肢运动的所有级别上,从严重到中度到中型的统计级别[0.00(0.0)(0.0)(0.0),在常规康复中的静止恢复之前,立即进行了10次LF-RTMS治疗(总计12,000个脉冲,占休息运动阈值的90%)。 2.0(1.0至3.75),p = 0.002;和2.0(0.0至4.50),p = 0.006]。两组之间的运动增益在统计学上也有显着差异(p = 0.027)。严重的 - 中度和中度至中间组中的中值运动率显着大于严重组中的运动型(调整后的P值<0.05)。结论:这项研究的结果表明,不管上肢运动障碍的水平如何,LF-RTMS之后进行常规康复的LF-RTM可能会为慢性中风患者的上肢运动恢复。关键字:慢性中风;上肢运动障碍水平;低频重复经颅磁刺激;运动增益然而,应根据在上肢运动障碍的基线水平根据其基线水平对受试者分层的强大的对照试验中,应研究LF-RTMS在隔离中具有临床意义的效果。
简介:由于缺乏肿瘤特异性,目前大多数抗癌疗法都伴有严重的副作用。已知使用工程纳米载体对药物进行适当的载体化可以增加肿瘤中治疗分子的局部浓度,同时最大限度地减少其副作用。间皮素 (MSLN) 是一种众所周知的肿瘤相关抗原,在许多恶性肿瘤中过表达,特别是在恶性胸膜间皮瘤 (MPM) 中,目前在临床前和临床试验中评估了各种 MSLN 靶向抗癌疗法。在本研究中,我们首次描述了用靶向 MSLN 的纳米抗体 (Nb) 对荧光有机纳米组装体 (NA) 进行功能化,以特异性靶向表达 MSLN 的 MPM 癌细胞。方法:使用来自不同癌症来源的细胞系,表达或不表达 MSLN。使用点击化学将针对 MSLN 的 Nb 偶联到荧光 NA 上。使用一组内吞抑制剂来研究细胞对靶向 NA 的内化。癌细胞在 2D 或 3D 和流动条件下生长,以评估靶向 NA 的特异性。使用流式细胞术、共聚焦显微镜和透射电子显微镜研究了靶向 NA 的结合和内化。结果:我们发现靶向 NA 特异性地与表达 MSLN 的肿瘤细胞结合。此外,与 MSLN+ MPM 细胞中的裸露 NA 相比,这种功能化的 NA 似乎内化得更快,而且比例明显更大,从而证明了主动靶向策略的功能性和意义。我们证明靶向 NA 主要通过网格蛋白独立/动力蛋白依赖的内吞途径内化,并被引导到溶酶体进行降解。基于表达 MSLN 的多细胞肿瘤球体的 3D 细胞培养模型揭示了 NA 在第一层表层中的渗透。结论:总之,这些结果为基于 MSLN 激活 NA 结合药物内化以促进活性治疗在肿瘤中的特异性积累的新型抗癌策略开辟了道路。关键词:间皮素、靶向、纳米组装体、纳米抗体、癌症