在1980年代解决此类问题,Manin [2]和Feynman [3]提出使用量子计算机ð量子机械系统,这些系统可以消除指数增加,因为它们以量子形式存储和处理信息。接下来,1992年,德意志和乔萨(Jozsa)确定量子计算机还可以加速解决某些数学问题的解决方案[4]。一个关键事件发生在1994年,当时Shor提出了多项式量子质量分解算法,这与最佳经典算法的指数依赖性相比是一个巨大的飞跃[5]。整数分解问题在现代世界中特别具有重要意义,因为它是互联网上最广泛的公共密码系统(在互联网上最广泛的公共加密系统)的基础(rsa)算法(ASYM-Unternet上最广泛的公共加密系统(Asym-Uncrypryption)[6] [6],这允许对两个以前的信息进行过大规模交换或在两个以前的信息交换之间,或者在7个以前都有机会。为此,第一个用户(服务器)选择了两个Primes Q和R,从中选择了公共密钥P QR,并通过未受保护的通信渠道将其发送给第二用户(客户端)。客户端使用公共密钥对其消息进行加密,并通过同一频道将其发送回服务器。进行解密,服务器使用了仅向他知道的秘密密钥,该密钥是由Q和R构建的。因此,攻击者解密消息的能力直接取决于他对公钥的考虑能力,这意味着有一天量子计算机将能够破解数据传输通道。由于量子计算机创建的巨大复杂性,到目前为止,只能仅考虑8位数字[8],而考虑到2048位公钥(截至2020年的标准)可能需要超过一百万吨数[9]。现有的通用量子计算机只有50至100量列表[10±12],并且在不久的将来将无法破解RSA算法;但是,今天传输的一些数据必须保密数十年[13]。
量子计算的概念通常归功于理查德·费曼,他在 1981 年推测,模拟量子力学系统的行为需要一台本质上具有量子力学性质的计算机 [1, 2];马宁 [3] 和贝尼奥夫 [4] 也在大约同一时间提出了类似的想法。1985 年,大卫·多伊奇通过形式化计算的量子力学模型,并提出量子计算具有明显计算优势的明确数学问题,为我们现在所知的量子计算奠定了基础 [5]。这反过来又引发了 20 世纪 80 年代末和 90 年代初当时尚处于萌芽阶段的量子计算领域的大量活动,并产生了该领域的两个至今仍是最重要的成就:1994 年,彼得·肖尔 (Peter Shor) 提出了一种在多项式时间内分解因式的量子算法 [6];1996 年,洛夫·格罗弗 (Lov Grover) 提出了一种搜索非结构化数据库的算法,其时间与数据库大小的平方根成比例 [7]。非结构化搜索(在这种情况下)是这样的问题:我们有 N = 2n 个元素(索引为 { 0 , 1 } n )需要搜索,还有一个“函数”f,对于恰好一个 x ∈ { 0 , 1 } n ,f(x) = 1,否则 f(x) = 0。 “非结构化”意味着没有算法捷径——f 只是技术意义上的函数,并不意味着它可以表示为一些简单的代数表达式——因此,经典上最好的(唯一)策略是穷举搜索,这要求在最坏的情况下对所有 N 个元素进行评估,平均而言对 N/2 个元素进行评估。从量子角度来看,我们可以准备所有可能的 n-双串的叠加,因此“查询”f 以获得所有可能的
量子计算的进展——回顾 *R. Madhusudhana 1、KC Navyashree 1、L. Krishnamurthy 1、R. Gopalkrishne Urs 2 1 印度国家工程学院(NIE)机械工程系纳米技术中心,Manandavadi Road,迈索尔,印度 1* madhu[at]nie.ac.in 2 印度国家工程学院(NIE)物理系,Manandavadi Road,迈索尔,印度 2 rgk[at]nie.ac.in 摘要:量子计算是一个快速发展的研究领域。本文深入介绍了量子计算及其迄今为止的进展。量子技术结合了量子力学、计算机科学和经典信息论。一般来说,首先会识别信息。然后,这些信息将传播以引起量子计算效应。它在物理学中占有基础地位 [3]。然而,信息的数学处理,尤其是信息处理,是相当新的,并且对于获得无错误的信息是必不可少的。在经典计算中,摩尔定律被用来处理信息。但摩尔定律很快就会不再适用,因为我们开始使用另一种计算类型,即量子计算。到目前为止,计算机已经变得越来越小,功能越来越强大。然而,尽管取得了这些进步,但仍有许多问题无法被强大的计算机解决,而且不能保证我们能够阐明这些问题,但可以通过量子处理来解决[9]。关键词:密码学、纠缠、叠加、量子计算 1.简介 量子计算是一种新的计算技术,它将使用两个量子力学特性,即叠加和纠缠[1][2][6]。叠加意味着量子系统能够同时存在于多个状态,而纠缠是两个粒子在一起的某种量子意义,无论它们之间的距离如何[1][9]。经典计算技术仅使用两种状态,即 0 或 1。但量子计算使用 0、1 以及 0 和 1 状态的叠加。这些被称为量子比特(量子位),类似于经典比特。使用量子计算的计算机称为量子计算机 [2]。量子计算机解决特定的计算问题,如整数分解。它比旧计算机计算和解决问题的速度更快 [2]。量子计算机研究属于量子信息科学领域。量子计算的先驱是 Paul Benioff 和 Yuri Manin。在这里,计算是通过在量子逻辑门的帮助下控制量子比特来完成的。这些逻辑门类似于传统的逻辑门 [10]。