摘要:激光粉末床熔合(LPBF)是一种很有前途的金属材料增材制造工艺,其优点是产品设计灵活,可制造各种机械零件。然而,由于金属零件是逐层堆叠的,因此 LPBF 制备的材料具有各向异性的微观结构,这对于材料设计非常重要。本研究从构建方向探究了 LPBF 制备的 18Ni300 马氏体时效钢(MS)的耐腐蚀性能,并研究了热处理和时效对微观结构和耐腐蚀性能的影响。LPBF 中快速冷却形成的亚晶胞提高了 MS 的耐腐蚀性能。因此,构建后的 MS 具有最高的耐腐蚀性能。然而,热处理或时效会消除亚晶胞,导致耐腐蚀性能下降。对于 18Ni300 MS,圆柱形亚晶胞形成并沿着散热方向排列,与建造方向相似;因此,在建造状态的 MS 中发现明显的耐腐蚀各向异性。然而,这种耐腐蚀各向异性会因热处理和时效而减弱,从而消除亚晶胞。
Jorge Gil1,A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,C,Omid Emadinia,2,D,D,Ana Reis,1,2和Abíliode耶稣1,2,F Jorge Gil1,A ∗,A * ,C,Omid Emadinia,2,D,Ana Reis,1,2和AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,2,B,B,Rui Amaral,Rui Amaral,1.2,C,Omid Emadinia,2,2,2,d,d,d,d,d,d,d,ana reis,1.2,and and and and and and and and and and emiia,de emia de emia de emiia, 1,2和Abíliode耶稣1,2,F J Orge gi l1,A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,C,Omid Emadinia,2,D,D,Ana Reis,1.2 A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,Omid Emadinia,2,D,Ana Reis,1.2,以及AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,Ricardo seca,ricardo seca,rica seca,b b b b b b b b b b,rui amaral,rui amaral,1.2,1.2,c,c,c,ana ana ana ana and de耶稣我Amaral,1.2,C,Omid Emadinia,2,D,Ana Reis,1,2和AbílioDe耶稣1,2,F J org and Gil1,A ∗,Ricardo Seca,2,B,Rui amaral,Rui amaral,1.2,1.2,1.2,1.2,C,Omidemidia f jorge gil1,a a emriia amar a emar,rica, ,D,Ana Reis,1.2和AbílioDeJesus1,2,F Jorge Gil1,A ∗,Ricardo,2,B,Rui Amaral,C,Omid Emadinia,2,D,D,Ana Reis,Ana Reis,1.2,1.2,1.2,1.2,2,b,b,b,b,rui amaral,1.2 A ∗,Ricardo Seca,2,B,Rui Amaral,1.2,C,Omid Emadinia,2,D,Ana Reis,1.2,以及AbílioDe耶稣1,2,F Jorge Gil1,C,C,Omid Emadinia,2,D,D,D,D,D,D,D,Ana Reis,1,2,1,2,E e耶稣和耶稣基督Amaral,1.2,C,Omid Emadinia,2,D,Ana Reis,1.2,以及AbílioDeJesus1,2,F J Orge Gil1,A ∗,D,Ana Reis,1,2,E和AbílioDe耶稣1,2 ,1.2和AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,B,Rui Amaral,1.2和AbílioDe耶稣1,2,F Jorge Gil1,A ∗,Ricardo Seca,Ricardo Seca,2,2,2,B,Rui amaral,1.2,c,c,c,omid emadinia and de ana ana ana ana ana ana, Jorge Gil1,A ∗,Ricardo Seca,B,Rui Amaral,1.2,C,Omid Emadinia Gil1,A ∗,Ricardo Seca,2,B,B,Rui Amaral,Rui Amaral,1.2,C,Omid Emadinia,2,2,D,D,D,Ana Reis,Ana Reis,1,2,和Abíliode Jesus1,1,2,和Abíliode Jesus1,2,2,f.
3D打印,又称增材制造(AM),自1987年以来得到了迅速发展。与传统制造方法相比,3D打印具有提高材料利用率、减少材料浪费等优势。马氏体时效钢具有良好的强度和韧性,且不损失延展性,已用于3D打印技术。选择性激光熔化(SLM)是3D打印方法之一,主要用于金属和合金粉末。本文将选择性激光熔化用于马氏体时效钢。3D打印马氏体时效钢是一种新材料,关于3D打印马氏体时效钢性能的研究仍在进行中。由于腐蚀成本高,耐腐蚀性是马氏体时效钢最重要的性能之一。因此,本论文将重点研究3D打印马氏体时效钢的腐蚀行为。本论文的目的是找到高耐腐蚀性的最佳热处理条件,并找到马氏体时效钢微观结构与腐蚀行为之间的关系。本文使用了几种具有不同热处理条件的马氏体时效钢样品。 SLM、SLM奥氏体化&淬火、SLM时效、常规奥氏体化&淬火、常规时效。此外,还制备了两种溶液,NaOH(pH=11.5)和Na2SO4(pH=6.5)。使用光学显微镜观察微观结构。SLM和常规样品的晶粒尺寸不同,不同热处理条件的样品的晶粒尺寸也不同。使用动电位极化法测量腐蚀行为。与常规样品相比,SLM样品的电流密度低得多,钝化电位和腐蚀速率相似。但由于缺乏进一步的实验,腐蚀行为之间的关系可能受到多种因素的综合影响。
