摘要。DNA测序数据的指数增长需要用于新颖的空间算法以进行压缩和搜索。状态的方法通常使用𝑘-Merization进行数据令牌化,但有效地表示和查询𝑘-MER集仍然是一个重要的生物敏化挑战。我们最近的工作介绍了掩盖超弦的概念,该概念紧凑地表示𝑘 -mer集,而无需依赖常见的结构假设。但是,蒙版SuperSrins在设定操作和会员查询中的适用性仍在打开。在这里,我们开发了𝑓屏蔽的SuperString框架,该框架集成了删除功能𝑓,从而通过串联启用有效的𝑘 -MER设置操作。结合了FM索引的量身定制版本,该框架为𝑘mer集提供了多功能,紧凑的数据结构。我们证明了它在FMSI程序中的有效性,与领先的单个𝑘-Mer-mer-set索引方法(如SSHASH和SBWT)相比,在细菌泛基因组上进行评估时,该程序将空间效率提高1.4至4.5。总的来说,我们的工作突出了𝑓屏蔽的超串将其作为用于𝑘mer集的多功能基本数据类型的潜力。
摘要 - 在这项工作中,我们提出了一种破坏性节俭的激光雷达感知数据流,该数据流产生而不是感知环境的一部分,这些部分是基于对环境的广泛培训,或者对整体预测准确性的影响有限的。因此,所提出的方法将传感能量与训练数据进行交易,以获取低功率机器人和自动导航,以便用传感器省将,从而在一次电池充电时延长了其寿命。我们提出的为此目的提出的生成预训练策略称为径向掩盖的自动编码(R-MAE),也可以在典型的激光雷达系统中很容易实施,通过选择性激活和控制在现场操作过程中随机生成的角区域的激光功率。我们的广泛评估表明,使用R-MAE进行预训练可以重点关注数据的径向段,从而比常规程序更有效地限制了空间关系和对象之间的距离。因此,所提出的方法不仅降低了传感能量,而且还提高了预测准确性。例如,我们对Waymo,Nuscenes和Kitti数据集进行了广泛的评估表明,该方法在跨数据集的检测任务的平均精度提高了5%,并且从Waymo和Nuscenes转移到Kitti的检测任务的平均精度提高了4%。在3D对象检测中,它在KITTI数据集中的中等难度水平下,在AP中最多可增强小对象检测。即使使用90%的径向掩蔽,它在Waymo数据集中所有对象类中的MAP/MAPH中都超过了基线模型。此外,我们的方法在Nuscenes数据集上分别获得了MAP和NDS的3.17%和2.31%的提高,这表明了其在单个和融合的LIDAR相机模态方面的有效性。代码可在https://github.com/sinatayebati/radial Mae上公开获取。索引项 - lidar预训练,掩盖自动编码器,超有效的3D传感,边缘自治。
现有的基于LIDAR的3D对象检测方法主要采用从划线范式进行训练。不幸的是,这种范式在很大程度上重新确定了大规模标记的数据,其收集可以充分陈述且耗时。自我监管的预训练是一种减轻这种依赖对广泛注释数据的有效且理想的方法。在这项工作中,我们提出了一种有效的掩盖自动编码器预训练框架 - 基于LIDAR的3D对象检测的自动驾驶前训练框架。具体来说,我们提出了鸟类视图(BEV)指导性掩盖策略,以指导3D编码器学习功能表示BEV的角度,并避免在预训练期间使用综合解码器设计。此外,我们还可以学习一个可学习的点令牌,以维持3D编码器的一致的回收字段大小,并进行微调的遮罩云输入。基于自主驾驶场景中室外点云的属性,即,遥远对象的点云更为稀疏,我们提出了点的预测,使3D编码器能够学习位置信息,这对于对象检测至关重要。实验结果表明,BEV-MAE超过了先前的自我监管方法,并实现了有利的预训练效率。此外,基于输血-L,BEV-MAE在基于Nuscenes的基准上获得了73.6 NDS和69.6 MAP的新最先进的3D对象检测结果。源代码将在https://github.com/vdigpku/bev-mae上发布。
摘要 — 蒙蔽图像建模 (MIM) 在各种视觉任务上都取得了令人鼓舞的结果。然而,学习到的表征的有限辨别能力表明,在构建更强大的视觉学习器方面仍有许多工作要做。为了实现这一目标,我们提出了对比蒙蔽自编码器 (CMAE),这是一种新的自监督预训练方法,用于学习更全面、更强大的视觉表征。通过新颖的设计精心统一对比学习 (CL) 和蒙蔽图像模型 (MIM),CMAE 利用它们各自的优势,学习具有强大实例辨别能力和局部可感知能力的表征。具体而言,CMAE 由两个分支组成,其中在线分支是非对称编解码器,动量分支是动量更新编码器。在训练期间,在线编码器从蒙蔽图像的潜在表示重建原始图像以学习整体特征。动量编码器以完整图像为输入,通过与在线编码器进行对比学习来增强特征辨别能力。为了使 CL 与 MIM 兼容,CMAE 引入了两个新组件:用于生成可信正视图的像素移位和用于补充对比对特征的特征解码器。得益于这些新颖的设计,CMAE 相比 MIM 有效地提升了表征质量和迁移性能。CMAE 在图像分类、语义分割和目标检测等竞争激烈的基准测试中取得了最佳性能。值得注意的是,CMAE-Base 在 ImageNet 上实现了 85.3% 的 top-1 准确率,在 ADE20k 上实现了 52.5% 的 mIoU,分别比之前的最好成绩提高了 0.7% 和 1.8%。源代码可在 https://github.com/ZhichengHuang/CMAE 公开访问。
由于数据集较小且难以获取标签,使用机器学习从 EEG 等生物信号中解码信息一直是一项挑战。我们提出了一种基于重建的自监督学习模型,即 EEG 的掩蔽自动编码器 (MAEEG),通过学习使用 Transformer 架构重建掩蔽的 EEG 特征来学习 EEG 表示。我们发现,当仅给出少量标签时,MAEEG 可以学习显着改善睡眠阶段分类的表示(准确率提高约 5%)。我们还发现,基于重建的 SSL 预训练期间的输入样本长度和不同的掩蔽方式对下游模型性能有很大影响。具体而言,学习重建更大比例和更集中的掩蔽信号可带来更好的睡眠分类性能。我们的研究结果深入了解了基于重建的 SSL 如何帮助 EEG 的表征学习。
摘要:旁道攻击是对现实世界中部署的密码系统的巨大威胁。针对旁道攻击的一种有效且可证明安全的对策是掩蔽。在本文中,我们详细研究了密钥封装机制 Saber 的高阶掩蔽技术。Saber 是美国国家标准技术研究所后量子标准化程序中基于格的最终候选者之一。我们对最近为 Saber 提出的不同掩蔽算法进行了详细分析,并提出了一种优化的高阶掩蔽 Saber 实现。与未掩蔽的 Saber 相比,我们针对一阶、二阶和三阶掩蔽 Saber 提出的技术分别具有 2.7 倍、5 倍和 7.7 倍的性能开销。我们表明,与另一种基于格子的最终方案 Kyber 相比,Saber 的性能随着掩码阶数的增加而下降得更少。我们还表明,高阶掩码 Saber 需要的随机字节比高阶掩码 Kyber 少。此外,我们将掩码实现调整为 uSaber,这是 Saber 的一个变体,专门设计用于实现高效的掩码实现。我们介绍了 uSaber 的第一个掩码实现,表明它在任何阶数上确实比掩码 Saber 至少高出 12%。我们在 ARM Cortex-M4 微控制器上提供了我们提出的所有掩码方案的优化实现。
有报道指出,隐匿性高血压(患者的诊室血压正常,但家庭自我测量的血压却高于诊室外血压)与持续性高血压非常相似,是心血管发病的预测因素。此外,夜间血压与心血管疾病密切相关。这可能意味着动态和家庭自我测量的血压监测各自提供独立的信息。我们对 165 名社区居民进行了动态血压监测、家庭自我测量的血压监测、超声心动图和颈动脉超声检查。我们根据动态和家庭自我测量的血压水平将患者细分为:隐匿性夜间高血压组,家庭自我测量的血压水平 < 135/85 mmHg,动态夜间血压水平≥ 120/75 mmHg;正常血压组患者家庭自我测量血压 < 135/85 mmHg,夜间动态血压 < 120/75 mmHg。隐匿性夜间高血压组的心肌内膜中层厚度 (IMT) 和相对壁厚度 (RWT) 均大于正常血压组(IMT:0.76±0.20 vs 0.64±0.14 mm,p < 0.05;RWT:0.50±0.14 vs 0.41±0.10,p < 0.05)。即使是家庭自我测量血压控制良好的高血压患者,夜间动态血压升高也可能促进靶器官损害。我们必须使用家庭自我测量血压监测来排除隐匿性高血压,我们也可能需要使用动态血压监测来排除夜间隐匿性高血压。 (高血压研究 2007;30:143–149)