摘要 我们介绍了一种基于量子虚时间演化 (QITE) 有效解决 MaxCut 问题的方法。我们采用线性 Ansatz 进行幺正更新和不涉及纠缠的初始状态,以及在给定图和切除两个边的子图之间插值的虚时间相关哈密顿量。我们将该方法应用于数千个随机选择的图,最多有 50 个顶点。我们表明,对于所有考虑的图,我们的算法表现出 93% 及以上的性能,可以收敛到 MaxCut 问题的最大解。我们的结果与贪婪算法和 Goemans-Williamson 算法等经典算法的性能相比毫不逊色。我们还讨论了 QITE 算法的最终状态与基态的重叠作为性能指标,这是其他经典算法所不具备的量子特征。
• 本文件是根据 OSHA 危害通识标准 29 DGR 1910.1200 的 MSDS 要求编写的。 • OSHA 分类:无害 • 加州 65 号提案(1986 年安全饮用水和有毒物质强制执行法案):该州已知会导致癌症的物质:Eastman 未知) • 加州 65 号提案(1986 年安全饮用水和有毒物质强制执行法案):该州已知会导致不良生殖影响的物质:Eastman 未知) • 本文件是根据 WHMIS(加拿大)受控产品法规的 MSDS 要求编写的。 • WHNIS(加拿大)状态:不受控 • WHMIS(加拿大)危害分类:不适用 • 致癌性分类(存在的成分为 0.1% 或更多):
量子近似优化算法 (QAOA) 是一种利用量子计算解决组合优化问题的有前途的方法。MaxCut 问题上的 QAOA 已在具有特定结构的图上得到了广泛的研究,然而,对于该算法在任意图上的一般性能知之甚少。在本文中,我们研究了对于所有具有最多八个顶点的连通非同构图,不同图特征与 MaxCut 问题上深度最多为 3 的 QAOA 性能之间的关系。QAOA 成功的一些很好的预测因素与图对称性、奇数环和密度有关。例如,在八个顶点的图上,经过三次 QAOA 迭代后,对于不包含奇数环的图选择最优解的平均概率为 60.6%,而包含奇数环的图为 48.2%。这些研究生成的数据在一个可公开访问的数据库中共享,以作为 QAOA 计算和实验的基准。了解结构和性能之间的关系可用于识别可能表现出量子优势的组合问题类别。
摘要 — 寻找图的最大割点 (MAXCUT) 是一个经典的优化问题,它推动了并行算法的开发。虽然 MAXCUT 的近似算法提供了有吸引力的理论保证并展示了令人信服的经验性能,但这种近似方法可能会将主要的计算成本转移到随机采样操作上。神经形态计算利用神经系统的组织原理来启发新的并行计算架构,提供了一种可能的解决方案。自然大脑的一个普遍特征是随机性:生物神经网络的各个元素都具有内在的随机性,这是实现其独特计算能力的资源。通过设计利用与自然大脑类似的随机性的电路和算法,我们假设微电子设备中的内在随机性可以转化为神经形态架构的宝贵组成部分,从而实现更高效的计算。在这里,我们展示了神经形态电路,它将一组随机设备的随机行为转化为有用的相关性,从而为 MAXCUT 提供随机解决方案。我们表明,与软件求解器相比,这些电路的性能更佳,并认为这种神经形态硬件实现提供了扩展优势的途径。这项工作展示了将神经形态原理与内在随机性相结合作为新计算架构的计算资源的实用性。
最大问题是组合优化的一个基本问题,具有物流,网络设计和统计物理等不同领域的显着含义。该算法代表了平衡理论严谨性和实际可扩展性的创新方法。提出的方法使用基于格罗弗的进化框架和划分和混合原理来研究量子遗传算法(QGA)。通过将图形分配到可靠的子图中,独立优化每个图并应用图形收缩以合并解决方案,该方法利用了Maxcut的固有二进制对称性,以确保计算效率和稳健的近似性能。理论分析为算法效率建立了基础,而经验评估则提供了其有效性的定量证据。在完整图上,所提出的方法始终达到真正的最佳最大值值,超过了半芬特编程方法(SDP)方法,该方法可为较大图提供多达99.7%的最佳解决方案。在Erd˝os-r´enyi随机图上,QGA表现出竞争性能,达到了SDP结果92-96%以内的中位数解决方案。这些结果展示了QGA框架提供竞争解决方案的潜力,即使在启发式约束下,也证明了其对量子硬件的可伸缩性的承诺。
我们介绍了一种基于量子虚时间演化 (QITE) 高效解决 MaxCut 问题的方法。我们采用线性 Ansatz 进行幺正更新和不涉及纠缠的初始状态,以及在给定图和切除两个边的子图之间插值的虚时间相关哈密顿量。我们将该方法应用于数千个随机选择的图,最多有 50 个顶点。我们表明,对于所有考虑的图,我们的算法表现出 93% 及以上的性能,收敛到 MaxCut 问题的最大解。我们的结果与经典算法(例如贪婪算法和 Goemans-Williamson 算法)的性能相比毫不逊色。我们还讨论了 QITE 算法的最终状态与基态的重叠作为性能指标,这是其他经典算法所不具备的量子特征。
在需要学习大量数据的场景下,增量学习可以充分利用旧知识,大幅降低整体学习过程的计算成本,同时保持高性能。本文以MaxCut问题为例,将增量学习的思想引入量子计算,提出一种量子主动增量学习算法(QPIL)。QPIL不是一次性训练量子电路,而是对所有顶点逐渐增加的子图进行多阶段训练,主动将大规模问题分解为较小的问题并分步求解,为MaxCut问题提供有效的解决方案。具体而言,首先随机选择一些顶点和对应的边进行训练,以获得量子电路的优化参数。然后,在每个增量阶段,逐渐添加剩余的顶点和对应的边,并在当前阶段的参数初始化中重用前一阶段获得的参数。我们在 120 个不同的小规模图上进行了实验,结果表明 QPIL 在近似比 (AR)、时间成本、抗遗忘和求解稳定性方面的表现优于流行的量子和经典基线。特别是 QPIL 的 AR 超过了主流量子基线的 20%,而时间成本不到它们的 1/5。QPIL 的思想有望启发在大规模 MaxCut 和其他组合优化问题中寻找高效、高质量的解决方案。
量子近似优化算法 (QAOA) 使用由量子演化的参数化层定义的变分拟设电路来生成组合优化问题的近似解。理论上,随着拟设深度的增加,近似度会提高,但门噪声和电路复杂性在实践中会损害性能。在这里,我们研究了一种 QAOA 的多角度拟设,它通过增加经典参数的数量来减少电路深度并提高近似率。即使参数数量增加,我们的结果表明,对于我们考虑的测试数据集,可以在多项式时间内找到好的参数。与 QAOA 相比,这种新的拟设使无限系列 MaxCut 实例的近似率提高了 33%。最佳性能的下限由传统拟设确定,我们针对八个顶点的图给出了经验结果,即多角度拟设的一层与 MaxCut 问题上传统拟设的三层相当。类似地,在 50 个和 100 个顶点图上的 MaxCut 实例集合上,多角度 QAOA 在相同深度下比 QAOA 产生更高的近似率。许多优化参数被发现为零,因此可以从电路中移除它们相关的门,从而进一步降低电路深度。这些结果表明,与 QAOA 相比,多角度 QAOA 需要更浅的电路来解决问题,使其更适合近期的中型量子设备。
使用经典计算获得组合优化问题的精确解需要耗费大量的计算资源。该领域的现行原则是量子计算机可以更有效地解决这些问题。虽然有前景的算法需要容错量子硬件,但变分算法已经成为近期设备的可行候选者。这些算法的成功取决于多种因素,其中假设的设计至关重要。众所周知,量子近似优化算法(QAOA)和量子退火等流行方法存在绝热瓶颈,导致电路深度或演化时间更长。另一方面,虚时间演化的演化时间受哈密顿量的逆能隙所限制,对于大多数非关键物理系统来说,该能隙是常数。在这项工作中,我们提出了受量子虚时间演化的启发的虚哈密顿变分假设(i HVA)来解决 MaxCut 问题。我们引入了参数化量子门的树形排列,从而能够使用一轮 i HVA 精确解决任意树形图。对于随机生成的 D 正则图,我们通过数值证明 i HVA 以较小的常数轮数和亚线性深度解决了 MaxCut 问题,优于 QAOA,后者需要轮数随图大小而增加。此外,我们的假设可以精确解决最多 24 个节点且 D ≤ 5 的图的 MaxCut,而经典的近最优 Goemans-Williamson 算法只能得出近似解。我们通过硬件演示在具有 67 个节点的图上验证了我们的模拟结果。
量子算法因其可能显著超越传统算法而越来越受欢迎。然而,量子算法在优化问题中的实际应用面临着与现有量子算法训练效率、成本格局形状、输出准确性以及扩展到大规模问题的能力相关的挑战。在这里,我们提出了一种基于梯度的量子算法,用于具有幅度编码的硬件高效电路。我们表明,简单的线性约束可以直接合并到电路中,而无需使用惩罚项对目标函数进行额外修改。我们使用数值模拟在具有数千个节点的完全加权图的 MaxCut 问题上对其进行测试,并在超导量子处理器上运行该算法。我们发现,当应用于具有 1000 多个节点的无约束 MaxCut 问题时,将我们的算法与称为 CPLEX 的传统求解器相结合的混合方法比单独使用 CPLEX 实现了更好的解决方案。这表明混合优化是现代量子设备的主要用例之一。