在动态环境中运行的边缘设备迫切需要能够持续学习而不会发生灾难性遗忘。这些设备中严格的资源限制对实现这一目标构成了重大挑战,因为持续学习需要内存和计算开销。使用忆阻器设备的交叉开关架构通过内存计算提供能源效率,并有望解决此问题。然而,忆阻器在电导调制中通常表现出低精度和高可变性,这使得它们不适合需要精确调制权重大小以进行整合的持续学习解决方案。当前的方法无法直接解决这一挑战,并且依赖于辅助高精度内存,导致频繁的内存访问、高内存开销和能量耗散。在这项研究中,我们提出了概率元可塑性,它通过调节权重的更新概率而不是大小来整合权重。所提出的机制消除了对权重大小的高精度修改,从而消除了对辅助高精度内存的需求。我们通过将概率元可塑性集成到以低精度忆阻器权重在错误阈值上训练的脉冲网络中,证明了所提机制的有效性。持续学习基准的评估表明,与基于辅助内存的解决方案相比,概率元可塑性实现了与具有高精度权重的最先进的持续学习模型相当的性能,同时用于附加参数的内存消耗减少了约 67%,参数更新期间的能量消耗减少了约 60 倍。所提出的模型显示出使用低精度新兴设备进行节能持续学习的潜力。
脉冲神经网络 (SNN) 的设计灵感来源于人类大脑,它是使用集成系统中的传统或新兴电子设备在硬件上实现高效、低成本和鲁棒的神经形态计算的最强大平台之一。在硬件实现中,人工脉冲神经元的构建是构建整个系统的基础。然而,随着摩尔定律的放缓,传统的互补金属氧化物半导体 (CMOS) 技术逐渐衰落,无法满足日益增长的神经形态计算需求。此外,由于 CMOS 器件的生物可行性有限,现有的人工神经元电路非常复杂。具有易失性阈值开关 (TS) 行为和丰富动态的忆阻器是超越 CMOS 技术模拟生物脉冲神经元并构建高效神经形态系统的有希望的候选者。本文回顾了有关 SNN 基础知识的最新进展。此外,我们回顾了基于 TS 忆阻器的神经元及其系统的实现,并指出了系统演示中从器件到电路需要进一步考虑的挑战。我们希望这篇综述可以为未来基于忆阻器的神经形态计算的发展提供线索和帮助。
摘要:我们对硬件神经网络(NN)进行了不同的仿真实验,以分析不同数据集在网络准确性中不同NN体系结构的突触数量的作用。一项在4 kbit 1T1R reram阵列上的技术,其中采用了基于H FO 2电介质的电阻开关设备作为参考。在我们的研究中,考虑了完全致密的(FDNN)和卷积神经网络(CNN),在这种情况下,在突触的数量和隐藏层神经元的数量方面,NN的大小各不相同。cnns效果更好。如果包括量化的突触权重,我们观察到随着突触的数量减少,NN的精度显着降低。在这方面,必须实现突触数量与NN准确性之间的权衡。因此,CNN架构必须经过精心设计;特别是,注意到不同的数据集根据其复杂性需要特定的架构以取得良好的结果。表明,由于可以在NN硬件实现的优化中更改的变量数量,因此必须在每种情况下都在突触重量级别,NN体系结构等方面使用特定的解决方案。
1电子与光学工程学院,微电子学院,南京邮政与电信大学,中国南京210023; 2020020114@njupt.edu.cn(Y.W。); 1219023530@njupt.edu.cn(X.C.); b18020308@njupt.edu.cn(D.S.); zmcstudy@163.com(M.Z。); 1320027503@njupt.edu.cn(X.C.); iamethu@njupt.edu.cn(E.H.); leiwang1980@njupt.edu.cn(l.w.)2 GUSU材料实验室,中国苏州215000; shaoweijing2020@gusulab.ac.cn(W.S. ); guhong2021@gusulab.ac.cn(H.G.) 3南京邮政与电信大学高级材料研究所(IAM),中国南京210023; 1220066008@njupt.edu.cn 4材料科学与工程学院,Yancheng理工学院,Yancheng 224051,中国; jgxu@163.com *通信:xurq@njupt.edu.cn(R.X. ) ); tongyi@njupt.edu.cn(y.t。)2 GUSU材料实验室,中国苏州215000; shaoweijing2020@gusulab.ac.cn(W.S.); guhong2021@gusulab.ac.cn(H.G.)3南京邮政与电信大学高级材料研究所(IAM),中国南京210023; 1220066008@njupt.edu.cn 4材料科学与工程学院,Yancheng理工学院,Yancheng 224051,中国; jgxu@163.com *通信:xurq@njupt.edu.cn(R.X.); tongyi@njupt.edu.cn(y.t。)
摘要:为了响应日益增长的时间信息处理的需求,神经形态计算系统正在越来越强调备忘录的开关动力学。虽然可以通过输入信号的属性来调节开关动力学,但通过备忘录的电解质特性控制它的能力对于进一步丰富了开关状态并提高数据处理能力至关重要。这项研究介绍了使用溶胶 - 凝胶过程的介孔二氧化硅(MSIO 2)膜的合成,从而可以创建具有可控孔隙率的膜。这些薄膜可以用作扩散的回忆录中的电解质层,并导致可调的神经形态切换动力学。MSIO 2回忆录表现出短期可塑性,这对于时间信号处理至关重要。随着孔隙率的增加,观察到工作电流,促进比和放松时间的明显变化。研究了这种系统控制的基本机制,并归因于二氧化硅层多孔结构内的氢键网络的调节,这在切换事件中显着影响阳极氧化和离子迁移过程。这项工作的结果提出了介孔二氧化硅,作为一个独特的平台,用于精确控制扩散的备忘录中神经形态开关动力学。关键字:介孔二氧化硅,扩散的回忆录,神经形态切换,短期记忆,离子动力学
双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
基于深度学习和 GPU 实现的解决方案已导致许多 AI 任务得到大规模改进,但也导致对计算能力的需求呈指数级增长。最近的分析表明,自 2012 年以来,对计算能力的需求增加了 30 万倍,估计每 3.4 个月这一需求就会翻一番 — — 这一速度远远快于历史上通过摩尔定律实现的改进(在同一时期内提高了七倍)。[1] 与此同时,摩尔定律在过去几年里显著放缓,[2] 因为有强烈迹象表明,我们将无法继续缩小互补金属氧化物半导体 (CMOS) 晶体管的尺寸。这要求探索替代技术路线图,以开发可扩展且高效的 AI 解决方案。
固态量子技术的不断进步已带来前景光明的高质量硅基量子比特 [1], [2]。此类量子系统在低至 10 mK 的低温下工作,目前由位于室温低温恒温器外部的经典电子设备控制。虽然这种方法可以操作少量子比特系统,但很明显,管理数量大幅增加的量子比特将是不可能的。因此,要迈向大规模量子系统,有必要探索新颖的集成和封装方法,以在具有一个或多个温度阶段的低温环境中开发量子经典接口 [3]。与此同时,纳米级电阻开关存储器(也称为忆阻器)是室温应用(如基于大规模并行神经形态电子架构的大容量存储器和内存计算应用)最有前途的候选者之一 [4]。在低温下展示可逆、非挥发和高度非线性的忆阻器器件电阻编程将为基于忆阻器的低温电子学铺平道路,从而有助于克服实现量子霸权的障碍。到目前为止,研究电阻存储器的最低温度是 4 K [5]–[10],主要是为了更好地了解基于过渡金属氧化物的器件的温度相关行为和传导机制。
本文综述了忆阻器的基本结构原理和材料,讨论了二元金属氧化物和钙钛矿忆阻器现有的研究,并在现有研究的基础上描述了它们的应用现状。最后对忆阻器的发展进行了全面的总结和展望,未来,忆阻器有望突破硅基集成电路摩尔速率的限制,为电路优化和计算机体系结构的发展做出贡献。
然而,在光电设备中,PB对应物的高性能,最近的努力,尤其是在CS 2 Agbibr 6双PSK上,[2]证明了它们在太阳能电池的广泛应用中的强大用途,[3-9] [3-9]光探测器,[10,11] x射线检测器,[10,11] X射线检测器[12] memristors [13] Memristors [13] 13]。[14] Moreover, when passing from the 3D double PSK toward its layered counterparts with two (2L) or one (1L) octahedra layers by introducing large A-site organic cations, such as butylam- monium (BA) or propylammonium (PA), allowed to develop new two-dimensional (2D) materials with tunable optoelec- tronic properties, such as the character of the bandgap as well as带隙的能量从≈2eV到≈3eV,这与无机晶格的失真有关。[15–19]尺寸还原也明显提高了候选人的ON/OFF比率,从10 2(CS 2 Ag-Birb 6至3d)到10 7(((Ba)2 Csagbibr 7),因为在扭曲的晶体结构中,离子迁移受到离子迁移的青睐。[20]从(Ba)2 Csagbibr 7中获得了具有较大迁移率的产物的X射线光绘制器,其中敏感性取决于晶体的尺寸(八面体层的数量)。[21,22]光电探测器的时间响应可以通过尺寸减小来增强,同时保持相似的检测率; [23]