尖峰神经网络(SNNS)代表了向更有能力和生物学上合理的计算模型转变的范式的最前沿。作为第三代神经网络技术,通过模拟生物神经加工的事件驱动的特征,SNN是传统机器智能系统的有前途的替代方案(Maass,1997)。SNN的吸引力是多方面的,它们的能力不仅可以在较低的功耗下运行,还可以以紧密反映大脑时空动态的方式进行计算(Roy等,2019)。SNN的基于尖峰的通信协议特别适合稀疏和异步计算,使其非常适合在神经形态芯片上部署。这些芯片旨在模仿大脑的神经结构,利用SNN的固有稀疏激活模式实现了显着的能量效率改善(Li等,2024; Frenkel等,2023; Merolla et al。; Merolla et al。,2014; Davies et al。,2018; davies et al。,2018; pei; pei et al an al et al et al。
95个基于硬件的SNN是模拟或数字的。模拟SNN系统[20]显示的功耗低于数字SNN [21]。相比之下,数字SNN更加灵活,因此更适合原型制作,同时显示整体的设计时间更快,因此构成了初步实验和新一代神经假体设计的最佳选择。突出的SNN硬件平台是Merolla [22],Brainscales-2 [23],Spinnaker [24]和Loihi [25]。尽管其中一些系统呈现出移动版本,例如[26]用于BrainScales-2,但它们通常不适合嵌入式应用程序。在本手稿中,我们介绍了实时仿生Snn Biouthmus的功能,以实现独立的神经元和完全连接的网络,展示了系统集成,促进了多功能性和易用性。
大多数人工智能算法在现有的计算系统上运行,例如中央处理单元(CPU),图形处理单元(GPU)和现场可编程可编程的门阵列(FPGAS)。(Batra,Jacobson,Madhav,Queirolo和Santhanam,2019年; Viswanathan,2020年),也正在开发用于加速机器学习的数字类型或模拟数字混合信号类型的应用特定的集成电路(ASIC)。然而,随着摩尔法律方法的扩展极限,通过现有扩展可以实现的性能和功率效率正在下降。需要一个特殊的处理器来在短时间内接受和处理学习数据,而该处理器是“ AI半导体”。AI半导体是专门针对效率的非内存半导体,以超高速度和超功率实施AI服务所需的大规模计算。AI半导体对应于核心大脑,学习数据并从中得出推断的结果。(Al-Ali,Gamage,Nanayakkara,Mehdipour,&Ray,2020; Batra等,2019; Esser,Appuswamy,Merolla,Arthur,&Modha,2015年)CPU是处理计算机所有输入,输出和命令处理的计算机的大脑。但是,对于需要大规模并行处理操作的AI,串行处理数据的CPU并未优化。为了克服这一限制,GPU已成为替代方案。gpu是针对3D游戏等高端图形处理开发的,但具有并行处理数据的特征,使其成为AI半导体之一。
