图2用于循环肿瘤细胞(CTC)基于液体活检的基于液滴的微流体。(a)使用交叉芯片进行CTC隔离的实验设置。根据CC的条款通过许可证复制。67版权所有2019,Ribeiro -Samy等。67(b)单个细胞水平上点突变分析的流动。经许可复制。68版权2021,Elsevier。 (c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。 经许可复制。 69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。68版权2021,Elsevier。(c)方案说明显示了基于声学液滴定位技术的多功能酶 - 响应性GNP芯片,用于捕获和释放单个CTC的需求。经许可复制。69版权所有2019,美国化学学会。 (d)数字WGS平台的设计和操作。 根据CC的条款复制了NC许可证。 70版权所有2019,Ruan等。 70(e)数字 - rna -seq的示意图。 经许可复制。 77版权2020,美国化学学会。 (f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。 根据PANS许可条款复制。 80版权所有2018,Dhar等。 80(g)基于虚拟液滴的SCPS平台的总体工作原理。 经许可复制。 81版权2020,Elsevier。 (H)基于配对芯片的单个细胞免疫测定的工作原理。 经许可复制。 85版权2022,美国化学学会。 根据CC的条款复制了NC许可证。69版权所有2019,美国化学学会。(d)数字WGS平台的设计和操作。根据CC的条款复制了NC许可证。70版权所有2019,Ruan等。70(e)数字 - rna -seq的示意图。经许可复制。77版权2020,美国化学学会。(f)基于大小的纯化和细胞的封装(SPEC),然后进行酶分泌的荧光分析。根据PANS许可条款复制。80版权所有2018,Dhar等。80(g)基于虚拟液滴的SCPS平台的总体工作原理。经许可复制。81版权2020,Elsevier。(H)基于配对芯片的单个细胞免疫测定的工作原理。经许可复制。85版权2022,美国化学学会。根据CC的条款复制了NC许可证。(i)使用MA芯片从患者液体活检中分离出代谢活性细胞的实验工作流程。87版权2020,Rivello等。87(j)使用滴剂 - 需求喷墨打印技术和MALDI MS的开放空间平台中基于代谢的捕获和分析肿瘤细胞的插图。经许可复制。88版权2021,美国化学学会。
在过去的几十年中,微型和纳米化方法的演变显着刺激了心脏组织工程的进步。微型和纳米级的工程允许使用心肌细胞重建心脏组织。人类诱导的多能干细胞的突破扩大了该领域,使成人细胞的人体组织可能发展,从而避免了使用胚胎干细胞的伦理问题,但也会产生患者特异性的人类工程组织。在心脏的情况下,源自人类诱导的多能干细胞和微/纳米工程设备的心肌细胞的组合引起了心脏病的新治疗方法。在这篇综述中,我们调查了用于心脏组织工程的微型和纳米化方法,范围从干净的室内图案(例如光刻和等离子体蚀刻)到静电纺丝和添加剂制造。随后,我们报告了心脏培养系统微流体的主要方法,所谓的͞hğăƌƚŽŷcśŝɖ͟,我们评估了它们对心脏病建模和药物筛查平台的未来开发的效力。
对单分子水平的蛋白质的分析发现了在合奏平均技术中掩盖的异质行为。传统上,酶的数字定量涉及通过促荧光底物的转化将单个分子划分为微室的单分子的观察和计数。基于线性信号扩增的策略仅限于几种酶,其周转率足够高。在这里我们表明,通过将指数分子放大器的敏感性与DNA-酶电路的模块化和液滴读数结合,允许在单分子水平上特异性检测几乎任何D(R)NA与NA相关的酶促活性。该策略(表示为数字PUMA)已通过十几种不同的酶进行了验证,其中包括许多催化速率缓慢的酶,并降低到Pyogenes cas9的明显单周转极限。数字计数独特地产生绝对摩尔定量,并在所有经过测试的商业制剂中揭示了很大一部分非活性催化剂。通过实时监测单个酶分子的扩增反应,我们还提取了催化剂种群中活性的分布,从而揭示了各种应力下的替代失活途径。我们的方法极大地扩大了可以从单分子分辨率下的定量和功能分析中受益的酶的数量。我们预计数字puma将作为一种多功能框架,用于在诊断或生物技术应用中进行准确的酶定量。这些数字测定也可以用于研究蛋白质功能异质性的起源。
tronics 任务: 开发生化检测方法 优化现有的液滴微流体工作流程和设备 从环境 DNA 样本创建宏基因组文库 使用无细胞表达平台进行蛋白质合成 对宏基因组样本产生的 DNA 文库进行超高通量筛选 使用 Python 或 R 分析高通量数据集 将研究结果传达给国际项目伙伴和科学界 我们提供: 三年合同(65%),工资按照 TV-L E13 计算 位于加兴 TUM 最大校区的熟悉且协作的研究环境 作为 TUM 博士生,您将自动加入 TUM 研究生院并受益于进一步的
塑料在被丢弃后需要更长的时间才能分解或降解,对生态和环境污染造成威胁。由于最近的响应和全球关注,人们正在尝试减少、再利用和回收使用的塑料。尽管这些努力似乎对一小部分废弃塑料取得了成功,但剩余的废物要么进入垃圾填埋场,要么通过多种途径进入水生态系统(Lange 2021)。微塑料和纳米塑料的形成源于较大的塑料碎片通过各种物理、化学和生物过程的分解。塑料可以通过多种机制分解或降解,包括生物(由生物体活动引起)、非生物(由非生物过程引起)、光降解(由暴露于光引起)、热(由热引起)和机械
免疫检查点抑制剂,例如PD -1/ PD -L1抑制剂进行免疫疗法,现在被认为是实体瘤最有前途的治疗方式之一。然而,基于肿瘤组织中PD -L1表达的临床疗效预测目前不精确,并且缺乏实现时间监测的能力。在这里,我们描述了一种独特的纳米植物,用于原位的PD -L1 RNA表达表达,与体外细胞行为分析相结合,以更好地预测患者癌症治疗的疗效。通过使用5 mL的血液样本,该系统产生分析输出,合并后,提供了一个指数,与传统活检相比,可以对患者的预测进行定量,更准确地预测患者的结局。
通过纳米和微技术(量子点和微流体)的融合,我们创建了一个能够对人类血清样本中的传染性病原体进行多重、高通量分析的诊断系统。作为概念验证,我们展示了能够检测全球最流行的血液传播传染病(即乙型肝炎、丙型肝炎和 HIV)血清生物标志物的能力,样本量少(<100 µ L),速度快(<1 小时),灵敏度比目前可用的 FDA 批准方法高 50 倍。我们进一步展示了同时检测血清中多种生物标志物的精确度,交叉反应性最小。该设备可以进一步发展成为便携式手持式即时诊断系统,这将代表发达国家和发展中国家在检测、监测、治疗和预防传染病传播方面的重大进步。
自然和我们的日常生活都被微塑料和纳米塑料所包围。他们的存在对环境和生物的健康有潜在的风险。尽管塑料在工业领域的优势(例如低成本和多功能性)最初是发明的,但它们的降解会导致不容易监测或检测的小颗粒,并且可以渗透到体内,而在本质上可能会持续数百年。他们的检测,识别和分析对于确定所有人的危险水平至关重要。全球塑料产量的兴起导致环境中微塑料和纳米塑料的患病率不断增加。缺乏标准化的处理方法使管理环境影响的努力变得复杂。目前的状态以及未来几年的预测似乎黯淡,促使科学家和立法者加强了开发和实施更好的解决方案的努力。
分析程序虽然同时是采用低成本塑料芯片的一种资源有效的便携式技术。[2]它被广泛用于各个领域,包括化学分析,生物传感系统,医学开发,临时诊断点,实验室芯片(LOC)设备(LOC)设备和芯片上的器官。[3]为了有效地控制和操纵流体,微流体系统需要一些有源组件,例如喷油器,泵,阀门和混合器。[4]已经开发了各种作用机制,例如气动,形状 - 内存合金,压电,二电,电磁和静电,以驱动这种活性成分。[5]但是,在主动微型设备中,常规驱动技术存在一些显着的局限性。例如,形状内存合金的响应时间相对较慢,并且使用高转换温度激活,这可能会损害流体样品,从而阻碍其在生物应用中的使用。[6]使用压电和静电代理的使用导致了微型电视和使用微加工和光刻技术的简单结构等微型发言。[7]但是,所使用的材料基于刚性硅,这可能不是单次使用,一次性和屈曲loc的首选材料。介电弹性体执行器需要高达数千伏的电压以实现合理的致动,但是,所涉及的高电压可能会改变样品的性能。这些特征限制了完全一次性的高级微流体系统的可能性。[8]基于聚二甲基硅氧烷(PDMS)的LOC中使用的气阀是一种控制液体流量的简单,最优雅的解决方案,但是,它们需要其他外部设备来控制驱动。[9]此外,大多数常规执行器都依赖于组件的混合整体,这些组件既复杂又需要一些特殊的制造设施,以损害成本效率。因此,至关重要的是,使用简单的机制来开发易于制造的执行器,以对LOC进行按需控制,该机制可能有效地制造。在过去的几十年中,导电聚合物已成为各种应用中的感测和致动材料,例如细胞生物学,微电力学系统
在 PC 行业中,网络制造生态系统(本文中也称为“网络系统”)旨在通过让对 EWOD 设计、制造和操作知之甚少的人们利用数字微流体作为便捷的液体处理平台来推动数字微流体领域的发展。...................... 52
