内部显微镜(IVM)和光学相干性断层扫描(OCT)是两个强大的光学成像工具,可在具有亚细胞分辨率的生活受试者中可视化动态生物学活动。在广泛的临床前和临床癌症成像中,标记和无标签技术的最新进展增强了IVM和OCT,从而对肿瘤的复杂生理,细胞和分子行为提供了深刻的见解。临床前IVM和OCT阐明了许多原本难以理解的癌症生物学方面,而IVM和OCT的临床疗法正在彻底改变癌症的诊断和疗法。我们回顾了IVM领域和OCT的重要进展,用于癌症成像,以强调关键的技术发展及其在基本癌症生物学研究和临床肿瘤学研究中的新兴技术。
本综述探讨了先进显微镜技术与机械工程之间的协同关系,概述了它们对材料科学和机械系统设计的深远影响。我们深入研究了电子显微镜、X 射线衍射和光谱方法在理解机械工程中不可或缺的材料的微观结构动力学、机械性能和失效机制方面的多方面应用。通过对近期研究的综合综合,我们强调了这些技术在优化材料性能、增强结构完整性和推动机械设计创新方面发挥的关键作用。通过阐明微观尺度上材料行为的复杂细节,先进的显微镜有助于在材料选择和设计过程中做出明智的决策。此外,我们还讨论了新兴趋势和前景,强调了先进显微镜与机械工程之间的持续协同作用。这种合作仍然处于材料科学和技术的前沿,有望取得持续进步,塑造机械设计和材料创新的未来格局。
摘要。深度神经网络(DNN)越来越多地在应用科学的各种领域中使用,尤其是在计算机视觉和图像处理等领域,它们可以增强仪器的性能。各种高级相干成像技术,包括数字全息图,利用卷积神经网络(CNN)或视觉变压器(VIT)等不同的深层体系结构。这些体系结构能够提取不同的指标,例如自动关联重建距离或3D位置确定,促进自动显微镜和相位图像恢复中的应用。在这项工作中,我们提出了一种使用Gedankennet模型的改编版本的混合方法,并与UNET样模型相结合,目的是访问Micro-Objects 3D姿势测量。这些网络在模拟全息数据集上进行了培训。我们的方法在推断3D姿势时达到了98%的精度。我们表明,Gedankennet可以用作回归工具,并且比微小的(TVIT)模型更快。总体而言,将深层神经网络整合到数字全息显微镜中和3D计算机微视频中,有望显着提高全息图的稳健性和处理速度,以精确的3D位置推理和控制,尤其是在微型机器人应用中。
作者:S Ströh · 2022 年 · 被引用 15 次 — 摘要 生物组织电子显微镜的成像吞吐量最近出现了前所未有的提升,推动了超微结构分析的发展……
我们报告了未标记样品的深波长远端光学显微镜的实验证明。,我们通过记录从物体散射到远端的相干光的强度模式来击败常规光学显微镜的K /2衍射极限。我们通过深入学习的神经网络检索有关对象的信息,该神经网络对大量已知对象进行了散射事件的训练。显微镜通过概率地检索成像对象的尺寸。二聚体的亚波长度的宽度以K /10的精度测量,概率高于95%,精度为K /20,概率高于77%。我们认为,所报道的显微镜可以扩展到随机形状的对象,并且对已知形状的对象尤为有效,例如在机器视觉,智能制造和生命科学应用程序的粒子计数的常规任务中发现。
本综述赞扬了电子显微镜方法的广度和深度,以及这些方法如何推动了对 MXenes 的大规模研究。MXenes 是二维材料中一个强大的新成员,源自其母体纳米层状材料家族,即 MAX 相。由于其丰富的化学性质,MXenes 表现出了彻底改变一系列应用的特性,包括储能、电磁干扰屏蔽、水过滤、传感器和催化。与电子显微镜相比,很少有其他方法在 MXene 研究和相应应用的开发中更为重要,电子显微镜可以在原子尺度上进行结构和化学识别。下面,将介绍已应用于 MXene 和 MAX 相前体研究的电子显微镜方法以及研究示例,并讨论其优点和挑战。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 的开放获取文章。
异质外延及其应用研究中心 (CRHEA) 是一个专门从事半导体材料外延的研究实验室,特别是宽带隙半导体,如 III 族氮化物材料 (GaN、AlN)、氧化锌 (ZnO)、碳化硅 (SiC) 及其在洁净室中的微纳米加工。CRHEA 还研究二维材料,如石墨烯、氮化硼和过渡金属二硫属化物以及超导 (NbN) 和新型铁电材料 (ScAlN、ZnMgO)。这些材料被加工成微电子、光电子、光子学、超表面和量子异质结构的设备。CRHEA 还开展纳米科学和晶体生长的基础研究。CRHEA 涉及的主要领域涉及能源转型、未来通信以及环境和健康。该实验室拥有九个分子束外延生长反应器和六个气相生长反应器。它还拥有用于材料结构表征的工具,包括最先进的透射电子显微镜 (TEM) (https://www.crhea.cnrs.fr/ACT-M/index.htm) 和用于微纳米制造的洁净室。CRHEA 拥有 70 名研究人员,其年度预算为 450 万欧元(不包括工资)。
图5的所有测量结果均由奈杰尔·麦克维(Nigel McEvoy)及其同事(都柏林三一学院)玛丽亚·奥布莱恩(Maria O’Brien)进行了销售。低频频谱表明1L Mose 2在此范围内没有拉曼峰(图5A)。随着层数增加的SM和LBM峰的增加,位置和强度的变化。 加速,在拉曼图像中,光学图像中似乎是最薄的薄片(图5B)几乎是看不见的,而较厚的材料可以通过其拉曼模式来检测(图5C)。 层堆叠的类型还会影响拉曼峰的强度和位置。 在稳定的,半导体的Mose 2中,具有三角棱镜协调性,单个层可以在两个称为h和r堆叠的两个方面组合。 这些所谓的多型不能在光学中彼此区分随着层数增加的SM和LBM峰的增加,位置和强度的变化。加速,在拉曼图像中,光学图像中似乎是最薄的薄片(图5B)几乎是看不见的,而较厚的材料可以通过其拉曼模式来检测(图5C)。层堆叠的类型还会影响拉曼峰的强度和位置。在稳定的,半导体的Mose 2中,具有三角棱镜协调性,单个层可以在两个称为h和r堆叠的两个方面组合。这些所谓的多型不能在光学
大脑器官,具有增加细胞多样性和寿命的自组织结构,已经解决了模仿人脑复杂性和建筑的缺点。然而,成像完整的类器官由于尺寸,细胞密度和光散射特性而引起的挑战。传统的单光子显微镜面临分辨率和对比度的局限性,尤其是对于深区。在这里,我们首先讨论了多光子显微镜(MPM)的基本原理,这是一种有前途的替代方案,利用非线性荧光团激发和更长的波长来改善现场大脑器官的成像。然后,我们回顾了MPM在研究形态发生和分化中的最新应用,并强调了其克服与其他成像技术相关的局限性的潜力。此外,我们的论文强调了大脑器官在提供人类特异性神经发育过程和神经系统疾病的见解中的关键作用,从而解决了人脑组织在翻译神经科学方面的稀缺性。最终,我们设想使用多模式多光子显微镜进行完整的大脑器官的纵向成像,这在我们对神经发育和相关疾病的理解方面推动了进步。
我们在几何沮丧的三角形晶格中研究了费米子莫特绝缘子,这是一种用于研究旋转液体和自发时间转换对称性破坏的范式模型系统。我们的研究证明了三角形莫特绝缘子的制备,并揭示了所有最近邻居之间的抗磁性自旋旋转相关性。我们采用真实空间的三角形几何量子气体显微镜来测量密度和自旋可观测物。将实验结果与基于数值链接群集扩展和量子蒙特卡洛技术的计算进行了比较,我们证明了沮丧的系统中的热度法。我们的实验平台引入了一种替代方法,用于沮丧的晶格,为未来研究外来量子磁性的研究铺平了道路,这可能导致哈伯德系统中量子自旋液体的直接检测。