API Technologies 为技术要求严格的射频、微波、毫米波、电磁、电源和安全应用设计和制造高性能系统、子系统、模块和组件。API 产品被全球国防、工业和商业客户用于商业航空航天、无线通信、医疗、石油和天然气、电子战、C4ISR、导弹防御、恶劣环境、卫星和太空等领域。
辐射和不同技术的融合,为微波工程界带来了激动人心的挑战。例如,图2 显示了 ITT Defense Technology Corporation 开发的相控阵雷达的全固态发射/接收模块。3 该模块在 20070 效率下提供 30 dB 增益,在 5 至 6 GHz 下以 12 W 峰值输出功率运行。它包含一个六位可编程移相器和发射器/接收器开关;一个功率放大器和两个驱动器;以及一个带发射/接收开关的低噪声前置放大器。该开发单元尺寸为 3.8 x 2.5 x 12.7 厘米,重 170 克;未来版本的尺寸和重量预计将是这个的一半。德州仪器公司开发了一款 X 波段的单芯片单片发射/接收模块。4 单芯片 13 x 4.5 毫米集成电路模块工作频率为 8 至 12 GHz,由一个 4 位移相器、一个 4 级功率放大器、一个 3 级低噪声放大器和两个发射/接收开关组成。该模块在发射模式下提供 500mW 输出,增益为 26dB,效率为 12.5%,在接收模式下提供 18dB 增益,噪声系数为 5.5dB。图 3 显示了 MIMIC 组件 HMM 11810。HMM 11810 是用于宽带应用的商业产品(Harris Semiconductor)。它在 6 至 18 GHz 频段提供 5 dB 增益,平坦度为 ±0.75 dB,输出功率为 50 m W,噪声系数为 6.5 dB。这只是大量可用于系统工程的 MIMIC 产品中的一个例子。微波元件的主要最终用户一直是军方,并且将继续是军方。20 世纪 80 年代初,卫星电视和数据传输承诺的大规模商业市场并未成为竞争技术(例如光纤)
17.3910 0.8913 1 1 5.5350 19.2715 24.8065 8.7242 0.7943 2 2 5.0780 13.7365 18.8145 5.8480 0.7079 3 3 4.6495 10.6907 15.3402 4.4194 0.6310 4 4 4.2489 8.6585 12.9073 3 5698 0.5623 5 5 3.8755 7.1773 11.0528 3.0095 0.5012 6 6 3.5287 6.0412 9.5699 2.6146 0.4467 7 7 3.2075 5.1405 8.3480 2.3229 0.3981 8 8 2.9108 4.4096 7.3204 2.0999 0.3548 9 9 2.6376 3.8063 6.4439 1.9250 0.3162 10 10 2.3866 3.3018 5.6884 1.7849 0.2818 11 11 2.1567 2.8756 5.0322 1.6709 0.2512 12 12 1.9465 2.5126 4.4590 1.5769 0.2239 13 13 1.7547 2.2013 3.9561 1.4985 0.1995 14 14 1.5802 1.9331 3.5133 1.4326 0.1778 15 15 1.4216 1.7007 3.1224 1.3767 0.1585 16 16 1.2778 1.4988 2.7766 1.3290 0.1413 17 17 1.1476 1.3227 2.4703 1.2880 0.1259 18 18 1.0299 1.1687 2.1986 1.2528 0.1122 19 19 0.9237 1.0337 1.9574 1.2222 0.1000 20 20 0.8279 0.9151 1.7430 1.1957 0.0891 21 21 0.7416 0.8108 1.5524 1.1726 0.0794 22 22 0.6639 0.7189 1.3828 1.1524 0.0708 23 23 0.5941 0.6378 1.2319 1.1347 0.0631 24 24 0.5314 0.5661 1.0975 1.1192 0.0562 25 25 0.4752 0.5027 0.9779 1.1055 0.0501 26 26 0.4248 0.4466 0.8714 1.0935 0.0447 27 27 0.3798 0.3969 0.7765 1.0829 0.0398 28 28 0.3391 0.3529 0.6919 1.0736 0.0355 29 29 0.3028 0.3138 0.6166 1.0653 0.0316 30 30 0.2704 0.2791 0.5495 1.0580 0.0282 31 31 0.2414 0.2483 0.4897 1.0515 0.0251 32 32 0.2155 0.2210 0.4365 1.0458 0.0224 33 33 0.1923 0.1967 0.3890 1.0407 0.0200 34 34 0.1716 0.1751 0.3467 1.0362 0.0178 35 35 0.1531 0.1558 0.3090 1.0322 0.0158 36 36 0.1366 0.1388 0.2753 1.0287 0.0141 37 37 0.1218 0.1236 0.2454 1.0255 0.0126 38 38 0.1087 0.1100 0.2187 1.0227 0.0112 39 39 0.0969 0.0980 0.1949 1.0202 0.0100 40 40 0.0864 0.0873 0.1737 1.0180 0.0089 41 41 0.0771 0.0778 0.1548 1.0160 0.0079 42 42 0.0687 0.0693 0.1380 1.0143 0.0071 43 43 0.0613 0.0617 0.1230 1.0127 0.0063 44 44 0.0546 0.0550 0.1096 1.0113 0.0056 45 45 0.0487 0.0490 0.0977 1.0101 0.0050 46 46 0.0434 0.0436 0.0871 1.0090 0.0045 47 47 0.0387 0.0389 0.0776 1.0080 0.0040 48 48 0.0345 0.0346 0.0692 1.0071 0.0035 49 49 0.0308 0.0309 0.0616 1.0063 0.0032 50 50 0.0274 0.0275 0.0549 1.0057 0.0028 51 51 0.0244 0.0245 0.0490 1.0050 0.0025 52 52 0.0218 0.0218 0.0436 1.0045 0.0022 53 53 0.0194 0.0195 0.0389 1.0040 0.0020 54 54 0.0173 0.0173 0.0347 1.0036 0.0018 55 55 0.0154 0.0155 0.0309 1.0032 0.0016 56 56 0.0138 0.0138 0.0275 1.0028 0.0014 57 57 0.0123 0.0123 0.0245 1.0025 0.0013 58 58 0.0109 0.0109 0.0219 1.0022 0.0011 59 59 0.0097 0.0098 0.0195 1.0020 0.0010 60 60 0.0087 0.0087 0.0174
摘要:被动微波探测器对于来自数值天气预测模型的准确预测至关重要。使用传统的两点方法对这些传感器进行校准,其中一个来源通常是一个自由空间的黑体目标,第二个来源是宇宙微波背景的清晰视图,通常称为“冷空间。”有时,这些校准源中的一个或两个都会因在冷空间视图中的太阳能/月球入侵而损坏。目前针对风暴和热带系统(Tempest)微波仪器仪器进行的时间实验,目前已在国际空间站(ISS)进行3年任务。Tempest还使用黑体目标和冷空间校准;但是,ISS上存在的物体通常会妨碍冷空空间视图。在这里,我们测试了仅使用黑体校准目标的替代单点校准方法。我们发现这种新方法与传统的两点校准方法之间的亮度温度差为0.1 k,当应用于2018年至2020年的Tempest Cubesat演示(Tempest-D)任务数据的3年。这种方法适用于其他微波辐射仪,这些微波辐射仪偶尔会降解校准源,例如热效应,侵入或噪声二极管的不稳定性。
的确,许多研究人员和政府人员开始相信,微波听觉效应(由高峰值脉冲脉冲微波辐射的靶向光束引起)可能是哈瓦那综合征的最可能的科学解释。美国国家科学,工程和医学学院发布了报告[8],检查了所描述疾病的合理原因,并指出:“在研究委员会认为的机制中,最合理的机制可以解释这些病例,尤其是在具有早期症状的个体中,似乎是患有早期症状的人,似乎是脉动,脉动,脉动脉动rf(Microseed RF(Microsave RF))。”当然,在揭示真相之前,这个具体问题将仍然有些谜。尽管如此,总统约瑟夫·拜登(Joseph Biden)的行政人员说,它正在大力调查有关影响美国外交官和情报人员的神秘疾病的最新报道[9]。
She11man-B1uff-to-Ocean-Tower 无线电链路的平面图。链路分集配置。链路接收信号电平记录设置。按时间划分的传播状态,1989 年 3 月。按时间划分的传播状态,1989 年 4 月。按时间划分的传播状态,1989 年 5 月。按时间划分的传播状态,1989 年 7 月 静态传播条件的示例,状态 1。从传播状态 1 过渡到状态 2 的示例。状态 3,底部天线显示最高信号。状态 4,中间天线显示最高信号。状态 5,所有天线。显示严重下降的水平。多径衰减分布计算的路径轮廓。多径衰减分布。链路预检测载波噪声比分布。测量的折射率梯度分布。计算的双模 1。折射率梯度分布。对应于 0.5 概率的射线路径
Aeroflex / Weinschel 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2 型号索引。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4-6 产品索引 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.6-8 快递和 Argosy 销售。。。。。。。。。。。。。。。。。。。。。。。。。.9-11 新产品 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.12-14 固定同轴衰减器。。。。。。。。。。。。。。。。。。。。。。.15-80 终端和负载。。。。。。....................81-132 可变衰减器(连续和步进) ........133-150 功率分配器和分配器 ....................151-164 移相器 ......................。。。。。。.165-170 直流模块 .。。。。。。。。。。。。。。。。.................171-176 同轴适配器 ............................... 177-184 平面盲配® 连接器 .................185-192 Planar Crown ® 连接器系统 ................193-198 可编程衰减器和衰减器/开关控制器 ..................199-260 子系统和配件 .....................261-282 美国销售代表 ........................283 全球销售代表 ...................284 订购信息 ................。。。。。。。。。.285 按字母顺序索引。。。。。。。。。。。。。。.............286-287 RoHs 合规性 ............。。。。。。。。。。。。。。。。。。。.287
Antonia Gambacorta 1 , Jeffrey Piepmeier 1 , Mark Stephen 1 , Rachael Kroodsma 1 , Isaac Moradi 3 , Alexander Kotsakis 3 , Fabrizio Gambini 2 , Matt Fritts 1 , James Mackinnon 1 , Joseph Santanello 1 , John Blaisdell 4 , Robert Rosenberg 4 , Narges Shahroudi 3 , Yaping Zhou 2 , Priscilla Mohammed 7 , Victor Torres 1 , Dan Sullivan 1 , Ed Leong 1 , David Robles 1 , Jie Gong 1 , Ian Adams 1 , Paul Racette 1
6.1在电路QED测量设置中结合腔外耗散和腔内衰减。。。。。。。。。。。。。。。。。。。153