目标:配备高分辨率红外天文学仪器,可以观测第一颗恒星、第一批星系的形成,以及潜在宜居系外行星的详细大气特征。状态:正在进行中,于 2021 年 12 月发射,并于 2022 年 7 月投入使用。目前在围绕太阳-地球 L2 点的轨道上运行。ETH 贡献:MIRI(中红外范围测量仪器)由粒子物理和天体物理研究所作为一个联盟的一部分开发。
4 这些作者贡献相同 *通信:darcy_pann@hotmail.com 收到:2023 年 5 月 8 日;接受:2023 年 6 月 8 日;在线发表:2023 年 6 月 19 日;https://doi.org/10.59717/j.xinn-med.2023.100015 © 2023 作者。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。引用:Lu H.、Wang Y. 和 Yu R. (2023)。免疫细胞膜包被的纳米粒子用于靶向心肌缺血/再灌注损伤治疗。创新医学 1(1),100015。急性心肌梗死 (MI) 仍然是一种严重的疾病,在世界范围内造成大量死亡和残疾。早期有效地应用血栓溶解疗法或直接经皮冠状动脉介入治疗(PCI)进行心肌再灌注可以减少MI的规模。然而,恢复缺血心肌血流的过程可能导致心肌细胞死亡,即心肌再灌注损伤。由于治疗缺乏靶向性和细胞因子相互作用的复杂性,目前仍然没有有效的治疗方法来保护心脏免受心肌缺血/再灌注损伤(MIRI)。纳米医学一直走在医学的前沿。然而,纳米粒子(NPs)具有几个局限性,例如靶向性差,生物稳定性差以及在体内易被免疫系统清除。因此,提出了一种免疫细胞膜包裹NPs的方法来解决这些问题。最近,通过细胞膜包裹药物进行疾病的靶向治疗受到越来越多的关注。免疫细胞膜包覆纳米粒子的技术进展可实现对病灶的高靶向性、高特异性和低副作用,在治疗MIRI方面具有巨大潜力。本文讨论了细胞衍生的膜包覆纳米系统、其制备工艺以及这些仿生系统在减轻MIRI损伤方面的适用性。最后,还介绍了其临床转化的前景和挑战。
教职员工 院长 Raz Danny 教授 Attiya Hagit Barequet Gill Ben-Chen Miri Biham Eli Bronstein Alexander Bruckstein Alfred Bshouty Nader Censor-Hillel Keren Cohen Reuven Elad Michael Elber Gershon El-Yaniv Ran Etzion Tuvi Friedman Roy Geiger Dan Ishai Yufeld Kimmel Kimmel Kimmel E. Naor Joseph (Seffi) Petrank Erez Pinter Ron Raz Danny Rivlin Ehud Roth Ronny Schuster Assaf Shachnai Hadas Shlomi Tomer Tsafrir Dan Yahav Eran Yavneh Irad
• 詹姆斯·韦伯太空望远镜的中红外仪器 (MIRI) 有四种观测模式。8 月 24 日,支持其中一种模式的装置,即中分辨率光谱 (MRS),在进行科学观测设置时,似乎出现了摩擦增加的情况。该装置是一个光栅轮,科学家可以在使用 MRS 模式进行观测时选择短波长、中波长和长波长。在对该问题进行初步健康检查和调查后,一个异常审查委员会被召集起来,以评估最佳的解决途径。
电力系统建模工作由维多利亚大学综合能源系统研究所可持续能源系统集成与转型 (SESIT) 小组的独立学术研究团队完成。SESIT 建模团队由 Madeleine McPherson 领导,为清洁能源路径数据库开发和建模做出贡献的成员包括 Reza Arjmand、Mohammad Miri、Mohammadali Saffari、Rick Hendriks、Madeleine Seatle、Robert Xu 和 Lauren Stanislaw。此次建模合作部分由 Mitacs 合作伙伴 IT14846 项目促成。需求方建模由 EnviroEconomics 和 Navius Research 的 Dave Sawyer 进行。Bradford Griffin 对模型输出进行了后期处理,以报告情景的财务指标。大卫铃木基金会全权负责定义要建模的路径、整合不同研究团队的见解并得出结论。
组织摘要 英国科学与技术设施委员会 (STFC) 负责协调社会面临的一些最重大挑战的研究,例如未来能源需求、监测和了解气候变化以及全球安全。它提供粒子物理学、天文学和核物理学方面的资助和支持,并在位于哈威尔 (RAL)、达斯伯里、爱丁堡 (UK ATC) 的研究和创新园区运营英国主要科学设施。在太空领域,STFC 运营英国研究与创新的太空枢纽 RAL Space、英国天文技术中心以及位于哈威尔、达斯伯里和爱丁堡的孵化器和公共访问设施。在过去的 60 年里,RAL Space 参与了 200 多种空间仪器的研制,UK ATC 在设计和建造许多天文仪器方面发挥了关键作用,包括詹姆斯韦伯太空望远镜的 MIRI 光谱仪。
上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
[1] C. M. Bender和S. Boettcher,具有P T对称性的非热汉尔顿人的真实光谱,物理。修订版Lett。 80,5243(1998)。 [2] W. D. Heiss,特殊点的物理学,J。Phys。 A 45,444016(2012)。 [3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。 A 42,153001(2009)。 [4] M. V. Berry,捷克的非赫米特式脱生物的物理学。 J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。80,5243(1998)。[2] W. D. Heiss,特殊点的物理学,J。Phys。A 45,444016(2012)。[3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。A 42,153001(2009)。[4] M. V. Berry,捷克的非赫米特式脱生物的物理学。J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。J. Phys。54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。54,1039(2004)。[5] W. D. Heiss,非官员运营商的特殊点,J。Phys。A 37,2455(2004)。[6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。修订版Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。77,570(1996)。[7] M.-A。Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。[8] H. Hodaei,M.-A。Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。[9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X.[10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M.Photonics 8,524(2014)。[11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。物理。社区。10,394(2014)。 [12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。 12,6297(2021)。 [13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。 修订版 x 6,021007(2016)。 [14] W. Tang,X。Jiang,K。Ding,Y.-X. Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。10,394(2014)。[12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。12,6297(2021)。[13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。修订版x 6,021007(2016)。[14] W. Tang,X。Jiang,K。Ding,Y.-X.Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Xiao,Z.-Q.Zhang,C。T。Chan和G.[15]物理。16,747(2020)。[16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X.社区。12,7201(2021)。[17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。natl。学院。SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。SCI。美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。美国117,29561(2020)。[18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。[19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。修订版Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Lett。124,086801(2020)。修订版x 9,041015(2019)。[20] K. Kawabata,K。Shiozaki,M。Ueda和M. Sato,非热物理学中的对称性和拓扑,物理学。
ESA的基石Gaia Astormentry Mission在2020年生产了早期数据版本3。Gaia目前是太空天体物理学中最有生产力的任务,其三倍以上是2021年其他任何ESA-LEDISS的出版物数量,甚至在同年也超过了Hubble太空望远镜。瑞士通过领导与恒星变异性相关的所有方面在盖亚(Gaia)发挥着重要作用。ESA的中产阶级宇宙学障碍欧几里得在交付完整的有效载荷时实现了非常重要的里程碑。瑞士为VIS仪器和极其复杂的数据处理系统提供了一些硬件。在2021年,NASA的James Webb太空望远镜的效果发布和部署是天体物理学家的绝佳圣诞节礼物,一定会带来许多非凡的发现。瑞士参加了Miri的发展,这是两种欧洲乐器之一。
MIRI, summer 2019: Formalized type theories, and proved properties of programs that reason about themselves Google, summer 2018: Worked on integration of Fiat Cryptography with BoringSSL in Chrome Google, summer 2016: Extended Fiat Cryptography with ECC primiatives for integration with Open Titan Microsoft Research, summer 2014: Collaboratively created a language for specifying in- put/output behavior of x86 assembly programs, ver ed the input/output behavior of a number of simple programs, and improved performance of the x86proved project MIT CSAIL PLV, 20122014: Entered a signi cant amount of category theory into the au- tomated proof assistant Coq, and worked on building an interface for databases and database migration on top of category theory MIT CSAIL CoCoSci, 20092011: Designed and managed the data collection webpage for research in categorical learning and transfer learning Commack High School, 2006年2009年:对自然数量集的研究电路,赢得第四名(2009)和第三(2008年)在ISEF中获得数学奖项