增材制造 (AM) 设计涉及各个设计领域的决策,包括产品设计、材料选择和工艺规划。在实践中,工程师通常采用顺序设计流程按顺序优化这些设计领域。但是,顺序设计流程中没有充分考虑耦合因素,例如共享变量、相关约束和冲突目标,导致工作流程效率低下和设计解决方案不理想。为了解决上述问题,本文提出了一个多学科设计优化框架来同时优化不同的领域,从而能够在复杂约束下快速探索和充分利用 AM 设计空间。更具体地说,所提出的框架基于并发优化方法,通过允许自动交换设计信息来协调不同设计领域的优化。此外,该框架还利用替代建模方法来近似高保真模拟,以促进迭代过程。通过两个示例验证了所提框架的有效性,一个是带孔设计的板,另一个是钩子设计,这两个示例涉及工艺和结构领域的多个设计目标,即打印时间、打印面积、应变能和最大 von Mises 应力。
摘要。本文介绍了工业牵引单元PE2U和PE2M框架的应力应变状态的理论分析结果。使用SolidWorks仿真软件中的有限元方法进行了应力 - 应变分析。分析结果对于估计服务寿命结束时牵引单元的剩余资源并延长其使用寿命是必要的。根据州标准的要求,为了延长滚动库存负载构造的使用寿命,应研究这些结构的应力 - 应变状态。使用SOLIDWORKS软件构建了3D框架的3D模型来评估应变状态。使用SolidWorks模拟程序,使用基于Palmgren-Miner-Mises理论的有限元方法评估了转向架框架的应力 - 应变状态。考虑了影响转向架框架的所有静态和动态载荷。
大夜水节是凡尔赛宫不可错过的夏季活动,每周六晚上都会吸引超过 12,000 名观众。此次活动由凡尔赛宫公共机构的子公司凡尔赛宫演出公司主办,为游客提供独一无二的机会,漫步穿过通常不对公众开放的树林,发现水量异常充沛的喷泉,并伴以从吕利到夏庞蒂埃、从格鲁克到拉莫的最伟大的巴洛克音乐旋律。每周的这个夜晚都以盛大的烟花表演结束。
新的付款模型的最终版本旨在提高肾脏移植率和透明度比最初提出的模型更简化,具有更容易实现增长的目标,并为满足模型目标的移植中心付费更大。 发布最终增加器官移植访问(IOTA)模型(1)是实现2019年前进的美国肾脏健康计划(2)目标的最新一步,该计划旨在通过增加预防和移植物来减少透析患者的数量。 Medicare和Medicaid Innovation中心(CMMI)于2024年5月首次发布了IOTA模型的草案,并要求公开评论。 最终模型于2024年11月发布,反映了旨在解决利益相关者对该模型的关注的综合模型,同时仍达到了提高移植访问的目标。 目前,大约13分之一新的付款模型的最终版本旨在提高肾脏移植率和透明度比最初提出的模型更简化,具有更容易实现增长的目标,并为满足模型目标的移植中心付费更大。发布最终增加器官移植访问(IOTA)模型(1)是实现2019年前进的美国肾脏健康计划(2)目标的最新一步,该计划旨在通过增加预防和移植物来减少透析患者的数量。Medicare和Medicaid Innovation中心(CMMI)于2024年5月首次发布了IOTA模型的草案,并要求公开评论。最终模型于2024年11月发布,反映了旨在解决利益相关者对该模型的关注的综合模型,同时仍达到了提高移植访问的目标。目前,大约13分之一
摘要:近年来,由于事故和血管疾病的增多,残疾问题日益严重。截肢患者失去肢体功能往往导致步态异常。能量储存和返回 (ESAR) 足部假肢提供了一种替代方案,有助于改善步态并最大限度地减少截肢者行走阶段的代谢能量消耗。本研究采用了 3 种设计,模型来自 Catia V5 软件。有限元法分析使用 Ansys Workbench 18.1 软件评估这三种设计,在正常步行活动中,负载为使用者体重的 1.2 倍,最大重量为 70 公斤。模拟材料是碳纤维预浸料,其拉伸强度、杨氏模量、泊松比和密度分别为 513.72 MPa、77.71 GPa、0.14 和 1.37 g/cm3。决策矩阵法用于根据预定标准确定最佳足部假肢设计。决策矩阵中的最高值为设计 3 中的 76。所选设计(设计 3)经过步态周期分析后,最大 von Mises 应力值为 76.956 MPa,每个步态周期足跟着地载荷模型的安全系数值为 1.0762;平足 3.2509;足尖离地 6.6263。
摘要:本文旨在回顾学生赛车离合器杆组件的重新设计方法,该组件经过拓扑优化并通过增材制造 (AM) 制造。在拓扑优化 (TO) 过程之前和之后进行了有限元法 (FEM) 分析,以实现优化部件的等效刚度和所需的安全系数。重新设计的离合器杆采用 AM-选择性激光熔化 (SLM) 制造,并由粉末铝合金 AlSi10Mg 打印而成。研究的最终评估涉及重新设计的离合器杆与之前赛车中使用的现有部件的实验测试和比较。使用 TO 作为主要的重新设计工具和 AM 为优化部件带来了重大变化,尤其是以下方面:减轻部件质量 (10%)、增加刚度、保持安全系数高于 3.0 值并确保更美观的设计和良好的表面质量。此外,使用 TO 和 AM 可以将多部件组装成一个由单一制造工艺制造的组件,从而缩短生产时间。实验结果证实了模拟结果,并证明即使施加的负载几乎比假设负载高 1.5 倍,组件上的最大 von Mises 应力仍低于 220 MPa 的屈服极限。
一种适应大师2中学生的教学,将他们交替遵循一定程度的教义,以使他们能够保持主机业务。教育创新(例如,倒转班级)近年来已为某些课程实施,以便强烈让学生参与培训并促进他们的成功。在某些课程中经历了一个新的评级系统,例如工程学校实践的内容(例如标准,学习结果,...)。
弹性和塑性理论、应力张量、应力变换、应变变换、八面体应变、有限变形、莫尔圆、各向同性和均质材料的胡克定律、平面应力和平面应变。塑性理论、金属屈服标准、冯·米塞斯屈服标准、特雷斯卡屈服标准、材料行为模型、列维米塞斯(流动法则)和普朗特-罗伊斯应力应变关系。滑移线场理论、亨基定理、滑移线图、最简单滑移线场。金属成型工艺:轧制 - 轧制压力、驱动扭矩和功率、功率损耗、拉丝 - 拉拔力和功率、最大允许压缩量、挤压 - 工作负荷、锻造 - 最大锻造力、深拉 - 拉拔力的估计、弯曲 - 工作负荷、回弹、冲孔和落料 - 变形模型和断裂分析、工作力的确定、金属成型中的摩擦和润滑。
摘要:ATLAS 是 LHC 的两个主要实验之一,目的是研究物质的微观特性,以回答粒子物理学最基本的问题。在首次数据运行取得成功之后,LHC 通过三次加速器升级,突破了质心和亮度的能量极限,从而扩大了新发现和精确测量的可能性,最终形成了高亮度 LHC(HL-LHC)。 )。为了充分利用增加的亮度,计划对 ATLAS 内部探测器进行两次重大升级。第一次升级已于 2015 年初完成,插入了 IBL,即距离光束线仅 3.2 厘米的第四个像素层。第二次重大升级定于 2024 年进行,整个内部探测器将被完全由硅器件制成的全新内部跟踪装置取代,以应对 HL-LHC 的高粒子密度和强辐射环境,该装置在运行期间运行期间将提供 3000 fb −1,几乎是整个 LHC 计划内部光度平均值的十倍。本论文讨论的是