摘要:社会企业包含不同的逻辑,因此寻找能够调和经济和社会目标冲突的商业模式非常复杂。我们认为数字技术可以帮助社会企业家克服这一困难。事实上,本文旨在通过对这些不同研究流派进行系统的文献综述,全面介绍(1)商业模式创新、(2)社会企业和(3)基于人工智能的创造力支持工具的文献现状。我们的目的不是对这三种文献进行全面回顾,而是确定将它们联系起来的主要主题和子主题。在此基础上,我们提出了一种新的观点,即复杂的商业模式创新(例如处理社会企业混合模式的创新)如何通过基于人工智能的创造力支持工具得到推动,并制定了扩大对这一有希望的联系的研究议程。
引言人工智能 (AI) 的发展已展现出令人瞩目的性能,特别是在图像处理或游戏等明确定义的领域。然而,所部署的技术对于人类用户来说可能是不透明的,这引发了一个问题:人工智能系统如何提供解释 (Neerincx 等人,2018 年;Rosenfeld 和 Richardson,2019 年),并且监管框架对可解释人工智能 (XAI) 的需求日益增长。话虽如此,2017 年,谷歌的研究主管 Peter Norvig 指出,在人类可能不擅长提供“解释”的情况下期望计算机提供“解释”是具有讽刺意味的。可解释人工智能 (XAI) 的大部分工作都严重依赖于以计算机为中心的视角 (Springer,2019 年)。例如,Holzinger 等人 (2020) 假设人类和人工智能系统可以平等地访问“基本事实”。由此可见,可解释性“……突出了机器表示中与决策相关的部分……,即有助于模型在训练中的准确性或特定预测的部分。”与许多 XAI 文献一样,这并没有为人类提供任何角色,只能作为被动接受者。这意味着人工智能系统能够反省自己的过程来生成解释。然后将得到的解释呈现给用户,并描述人工智能系统的流程或它使用过的特征(“决策相关部分”)。这样,解释就只是一个建议(来自人工智能系统)加上与此相关的特征。正如 Miller (2017) 所指出的那样,这种态度的一个问题在于,它是基于设计师对什么是“好的”解释的直觉,而不是基于对人类如何响应和利用解释的合理理解。这并不能说明为什么选择某些特征,也不能说明为什么建议适合用户的关注点。它也没有将解释置于更广泛的组织中;分析师的解释可能与数据收集管理人员或接受分析师简报的经理的解释不同。对于 Holzinger 等人 (2020) 来说,情况的各个方面(定义为基本事实)被组合成一个陈述;也就是说,解释只是这个陈述的一种表达。这意味着从特征到解释存在线性插值。这类似于 Hempel 和 Oppenheim (1948) 的“覆盖定律模型”,该模型关注的是历史学家如何根据先前的原因来解释事件。然而,“基本事实”(由 Holzinger 的过程模型和覆盖定律模型假设)很少得到完全定义(导致在选择相关特征时产生歧义)。这意味着,仅仅陈述情况方面而不说明为什么选择这些方面(而不是其他方面)可能不会产生有用或可用的解释。霍夫曼等人(2018)对与解释相关的文献进行了全面的回顾。从这篇评论来看,解释涉及人类的理解(将人工智能系统的输出置于特定情境中),我们同意,考虑这一点的适当框架是数据框架的理解模型(Klein 等人,2007)。此外,理解(及其与解释的关系)依赖于认识到过程(提供和接收解释)必须是相互的、迭代的和协商的。这个过程依赖于“解释者”和“被解释者”达成一致。换句话说,解释涉及“共同点”(Clark,1991),其中理解上有足够的一致性以使对话继续进行。对话的性质将取决于提供解释的情况和被解释者的目标。例如,被解释者可能是“受训者”,他试图理解解释以学习决策标准,也可能是“分析师”,使用人工智能系统的建议作为政策。
大规模视觉语言预训练模型的最新进展已在自然图像领域中的零样本/少样本异常检测方面取得了重大进展。然而,自然图像和医学图像之间巨大的领域差异限制了这些方法在医学异常检测中的有效性。本文介绍了一种新颖的轻量级多级自适应和比较框架,以重新利用 CLIP 模型进行医学异常检测。我们的方法将多个残差适配器集成到预训练的视觉编码器中,从而实现不同级别视觉特征的逐步增强。这种多级自适应由多级、逐像素的视觉语言特征对齐损失函数引导,将模型的重点从自然图像中的对象语义重新校准到医学图像中的异常识别。调整后的特征在各种医学数据类型中表现出更好的泛化能力,即使在模型在训练期间遇到看不见的医学模态和解剖区域的零样本场景中也是如此。我们在医学异常检测基准上进行的实验表明,我们的方法明显优于当前最先进的模型,在零样本和少样本设置下,异常分类的平均 AUC 改进分别为 6.24% 和 7.33%,异常分割的平均 AUC 改进分别为 2.03% 和 2.37%。源代码可从以下网址获取:https://github.com/MediaBrain-SJTU/MVFA-AD
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
虽然基础模型有时被认为与“通用人工智能”(GPAI)完全相同,但实际上它们只是众多 GPAI 类型中的一种(尽管非常强大)。其他 GPAI 类型包括(通常非常基础的)用于一系列任务(例如模式检测或翻译)的 AI 系统。
两种常见的顺序决策方法是人工智能规划 (AIP) 和强化学习 (RL)。每种方法都有优点和缺点。AIP 具有可解释性,易于与符号知识集成,并且通常很高效,但需要预先指定逻辑域,并且对噪声敏感;RL 只需要指定奖励,并且对噪声具有鲁棒性,但样本效率低下,不易获得外部知识。我们提出了一种将高级规划与 RL 相结合的综合方法,保留了可解释性、迁移和效率,同时允许对低级规划操作进行鲁棒学习。我们的方法通过在 AI 规划问题的状态转换模型和马尔可夫决策过程 (MDP) 的抽象状态转换系统之间建立对应关系,从 AIP 运算符定义分层强化学习 (HRL) 中的选项。通过添加内在奖励来学习选项,以鼓励 MDP 和 AIP 转换模型之间的一致性。我们通过比较 MiniGrid 和 N 室环境中 RL 和 HRL 算法的性能来展示我们的集成方法的优势,展示了我们的方法相对于现有方法的优势。
太阳能干燥机一直因其性能较低而受到批评。定义太阳能干燥系统性能的方法有很多种,例如热性能、干燥动力学、环境因素、经济评估和干燥产品的质量。还开发了不同的建模技术来设计和分析太阳能干燥机和干燥过程。本文系统、全面、最新地概述了用于评估和分析太阳能干燥机(尤其是家用和低成本太阳能干燥机)的各种性能指标和建模技术。环境分析具有严重的全球影响,产品质量是消费者最关心的问题之一。但据观察,文献中很少报道家用太阳能干燥机的环境影响和产品质量评估。建模技术在太阳能干燥中的应用改变了分析任何热系统的方式。本文试图建立家用太阳能干燥机的总体评估标准,并为世界各地的研究人员和用户提供一站式解决方案。
在计算机图形学中创建高质量的材质是一项具有挑战性且耗时的任务,需要很高的专业知识。为了简化这个过程,我们引入了 MatFuse,这是一种统一的方法,它利用扩散模型的生成能力来创建和编辑 3D 材质。我们的方法整合了多种条件来源,包括调色板、草图、文本和图片,增强了创造可能性并对材质合成进行了细粒度的控制。此外,MatFuse 通过多编码器压缩模型的潜在操作实现了地图级材质编辑功能,该模型可以学习每个地图的解开的潜在表示。我们在多种条件设置下展示了 MatFuse 的有效性,并探索了材质编辑的潜力。最后,我们根据 CLIP-IQA 和 FID 分数定量评估生成材质的质量,并通过开展用户研究定性评估生成材质的质量。用于训练 MatFuse 的源代码和补充材料可在 https://gvecchio.com/matfuse 上公开获取。
摘要 电池组既表现出固有的电池间差异,也表现出温度和其他应力因素的时空差异,从而影响电池退化路径的演变。为了解释这些变化和退化或电池扩散的差异,我们提出了一种利用 3 参数非齐次伽马过程对锂离子电池退化进行建模的方法。该方法可预测任何电池架构的容量衰减或故障时间,并使用加速因子调整电池拟合退化数据的分布。在电池组级别,使用并联和串联配置的伽马分布变量组合对电池进行建模。将不同热条件下的容量衰减或故障时间的实际值与预测值进行比较,显示相对误差在 1 – 12% 范围内。我们还提出了一种通过分析样本量对估计不同电池组退化的影响来估计建模扩散和退化路径演变所需的最少电池数量的方法。这种采样策略对于降低设计电池组、电池管理系统和电池热管理系统所需的运行模拟的计算成本特别有用。
两幅图像,两个女人,两个世纪:一张是黑白的,另一张是彩色的。第一张是弗里茨朗 1927 年著名电影《大都会》中玛丽亚的剧照(图 1)。《大都会》拍摄于魏玛共和国,背景设定在一个未来的反乌托邦世界,富有的市长之子弗雷德与工业工人中的圣人玛丽亚联手,弥合阶级鸿沟。他的父亲,市长,听到了叛乱的风声,命令发明家罗特旺将机器人改造成玛丽亚的样子,以毁掉她在工人中的名声。罗特旺绑架了玛丽亚,并将她的肖像转移到机器人身上,机器人玛丽亚随后在整个大都会引发混乱。快进九十年,我们看到了索菲亚的照片,索菲亚是汉森机器人公司的发明,也是世界上第一个获得公民身份的机器人