1996 年 1 月 1 日之后发布的报告通常可通过 OSTI.GOV 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847)TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 能源部员工、能源部承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/
氯化物盐具有在高达 800 C 的极高温度下使用的巨大潜力(例如 MgNaK//Cl 混合物),但也可用作低熔点 HTF,例如共晶 ZnNaK//Cl(T m = 200 C)的情况。[12] 由于具有足够的热容量,氯化物盐是熔融盐催化转化过程中最有前途的 HTF。 尽管如此,其化学性质也带来了技术挑战。 在热能存储领域,由于氯化物盐在高温下对金属合金的腐蚀性质,人们对其进行了深入研究。 人们普遍认为,腐蚀机理受许多参数的影响,主要是温度、盐纯度以及主要基于氧和/或水分的杂质的存在(例如,参见 Ding 关于熔融氯化盐腐蚀的综述 [12])。在未来的热能存储中发挥重要作用的MgCl 2基熔盐中,主要的腐蚀性杂质已被鉴定为羟基氯化物(MgOHCl),并且假定它是水合MgCl 2水解的产物。 [12,13]可以使用不同的方法显着降低杂质水平,例如电解盐净化[14]或添加牺牲剂,例如元素Mg,[15]与杂质反应形成惰性MgO。以类似的方式,添加固体氧化物(例如ZnO和CaO)可显着减少
从可靠性的角度来看,这种方法面临挑战。如果一个实用程序依靠短期存储(<= 4 h)来移动可再生能源,那么当可再生能源不可用时会发生什么?例如,在太阳统治的系统中,太阳能输出的多天(由于雨水,大云,暴风雨,雪等)将阻碍短期存储系统充电的能力(参见Collanton等。2020,参见。 ISO新英格兰2021)。 风向主导的系统毫无闻所未闻的几天几天至没有风(例如) 参见。 Morison 2018),带来同样的挑战。 换句话说,随着发电和容量资源的发电和太阳能固有的波动也扩展到可再生能源存储系统。 电力公用事业具有评估可靠性(以及如何维护)的机制,这些机制与有效的负载承载能力(ELCC)及其与计划储备保证金(PRMS)的相互作用的概念有关。2020,参见。ISO新英格兰2021)。 风向主导的系统毫无闻所未闻的几天几天至没有风(例如) 参见。 Morison 2018),带来同样的挑战。 换句话说,随着发电和容量资源的发电和太阳能固有的波动也扩展到可再生能源存储系统。 电力公用事业具有评估可靠性(以及如何维护)的机制,这些机制与有效的负载承载能力(ELCC)及其与计划储备保证金(PRMS)的相互作用的概念有关。ISO新英格兰2021)。风向主导的系统毫无闻所未闻的几天几天至没有风(例如参见。Morison 2018),带来同样的挑战。换句话说,随着发电和容量资源的发电和太阳能固有的波动也扩展到可再生能源存储系统。电力公用事业具有评估可靠性(以及如何维护)的机制,这些机制与有效的负载承载能力(ELCC)及其与计划储备保证金(PRMS)的相互作用的概念有关。
•在1990年代开发的决策过程,以帮助通过复杂的优先级方案进行工作;在军事,政府,私营部门和学术界中广泛使用。•基于支持决策过程而不是直觉的知识来鼓励决策。•通过一次比较两个标准(即成对比较)来简化过程,以确定哪些对决策目标更重要。•采用以客观,加权标准和替代方案为中心的多层次(分层)结构。
与熔融盐应用相关:1。在干燥/固化和地质聚合度的程度与开放孔隙度的过程中的水流途径2。最大量的空心浓圈添加与有效的热导率3。地质聚合物矩阵与添加剂之间的界面的稳定性4。na来自激活剂溶液与化学稳定性(阳离子扩散,离子交换等)5。地球聚合物的总体机械性能
将基于先进吸收式制冷机的高效热制冷技术以及可选的其他服务集成到供热和制冷网络中,需要能够在 100 ºC 以上的温度下输送能量(这是水存储的物理极限)。因此,到目前为止,只有可管理的能源(如化石能源(天然气或煤炭)和生物质)才能满足需求,例如,性能系数 (COP) 大于 1 的双效吸收式制冷机。将间歇性热能源(如太阳能)集成到中温应用中,需要开发基于在此温度范围内(即 130 至 300 ºC 之间)性能稳定的流体的存储选项。
发电是由于从化石燃料中释放出的CO 2引起的温室气体(GHG)发射的主要贡献者。此外,电力也是能量向量之一,在不久的将来将进行许多应用[1,2]。作为未来能源系统的目标,必须确保其稳定性和可分配性。在所有可用的人中,太阳能是最合适的替代方案之一:它是干净,丰富且易于获得地球上任何地方的替代品。在不同的替代方案中,集中的太阳能(CSP)与热量储能(TES)结合使用,可以使电力符合峰值需求并解决供应 - 需求 - 需求耦合问题,从而使能量释放及其对电力的转化为必要时,并避免了固有的固有资源可用性的不稳定性[3]。尽管国际能源机构(IEA)估计,CSP将提供2050年产生的全球电力的11%[4],当前运营或开发的工厂主要使用具有基于硝酸盐的材料的明智TES系统。必须探索其他替代方案,因为它们有可能在降低成本,增强热能以及更高/更广泛的运营方面克服商业TES材料的几个缺点。tes与CSP一起,仍然有很长的路要走,他们被认为是一致,健壮,连续和竞争的替代方案。因此,将未来的能源管理和发电组合融合在很大程度上取决于TES材料的未来发展。这项工作的作者需要对最有希望的下一代TES材料进行全面评论,以分析其优势和劣势,总结叙事中发现的最相关的热力学特性,并定义并评估三个不同的关键性能指标(KPI),以帮助最大程度地适合特定的特定选择。
•从商业设计开始,使用它来定义飞行员规模的系统需要做什么。•> 700°C需要分析蠕变。详细的非弹性分析对于准确性和避免过度保守的限制是必要的。•材料可用性,代码资格,物理数据,焊接知识等。可以约束。•瞬态操作将是挑战。•重新考虑公约
摘要电池具有高安全性,低成本和合理的能量密度对于网格尺度存储至关重要,并且仍然难以捉摸。在这里,我们报告了使用石榴石型锂离子固体固体电元素,锂阳极和黄铜/Zncl 2 PORTODE的固体电解质液锂/氯化氯化物/氯化锌(卖出涂料/Zncl 2)电池。细胞反应的化学和在排放状态中组装的能力具有很高的安全性。低成本ZNCL 2阴极的使用可以意识到低细胞材料成本为$ 16 kWh 1。采用锂阳极果仁的高理论能量密度为750 WH kg 1和2,250 WH 1。此外,通过将黄铜粉末用作阴极中的锌源,成功解决了Zn颗粒生长问题,并且可以获得电池的良好循环稳定性。作为完整的细胞性能和可伸缩性也可以验证,我们的卖出包装/ZNCL 2电池在网格储能中的实际使用可能很高。