Paul Mulder 教授(合伙人 1 和法国协调员)是一位心血管生理学家,在实验药理学领域拥有超过 35 年的专业知识,专注于心脏代谢研究(即心力衰竭、高血压和代谢综合征)。完成药学研究后,他于 1991 年在巴黎获得博士学位,随后移居法国鲁昂。在那里,他负责在 INSERM U1096 评估高血压、心力衰竭、急性失代偿大鼠模型中的全身和心脏血液动力学、心血管功能,他的专业知识得到了与国内外制药公司(即 Servier、Sanofi、Poxel、CorteriaPharma、Bayer、Novartis、Idorsia、Boehringer-Ingelheim)的大量合作的认可。他参与了两个正在进行的欧盟项目:一个是作为合作伙伴参与的玛丽居里项目,另一个是作为项目协调员参与的 ERA4Health 计划项目“针对心血管疾病创新治疗策略开发的研究,CARDINNOV”。Mulder P、Richard V、Derumeaux G、Hogie M、Henry JP、Lallemand F、Compagnon P、Mace B、Comoy E、Letac B、Thuillez C。内源性内皮素在慢性心力衰竭中的作用:长期使用内皮素拮抗剂治疗对生存率、血流动力学和心脏重塑的影响。Circulation 1997;96:1976-1982。 Mulder P , Barbier S, Chagraoui A, Richard V, Henry JP, Lallemand F, Renet S, Lerebours G, Mahlberg-Gaudin F, Thuillez C. 选择性 If 电流抑制剂伊伐布雷定引起的长期心率降低可改善充血性心力衰竭的左心室功能和内在心肌结构。Circulation 2004;109:1674-1679. Merabet N, Bellien J, Glevarec E, Nicol L, Lucas D, Jouet D, Bounoure F, DreanoY, Wecker D, Thuillez C, Mulder P . 可溶性环氧化物水解酶抑制可改善实验性心力衰竭的心肌灌注和功能 J Mol Cell Cardiol. 2012;52(3):660-6。 Henri O, Pouehe C, Galas L, Houssari M, Nicol L, Edwards-Lévy F, Henry JP, Dumesnil A, Banquet S, Schapman D, Thuillez C, Richard V, Mulder P , Brakenhielm E. 选择性刺激心脏淋巴管生成可减少心肌水肿和纤维化,从而改善心肌梗死后的心脏功能。循环 2016 ; 133: 1484-97。Harouki N, Nicol L, Remy-Jouet I, Henry JP, Dusmenil A, Lejeunne A, Renet S, Golding F, Djerada Z, Wecker D, Bolduc V, Bouly M, Roussel J, Richard V, Mulder P . IL-1 抗体 gevokizumab 可限制心力衰竭大鼠的心脏重塑和冠状动脉功能障碍。 JACC:从基础到转化科学。J Am Coll Cardiol Basic Trans Science 2017;2:418–30。Peschanski N、Harouki N、Soulie M、Lachaux M、Nicol L、Remy-Jouet L、Henry JP、Dumesnil A、Renet S、Fougerousse F、Brakenhielm E、Ouvrard-Pascaud A、Thuillez C、Richard V、Roussel J、Mulder P。短暂性心率降低可改善急性失代偿性心力衰竭引起的左心室和冠状动脉功能障碍。ESC 心力衰竭 2020。DOI:10.1002/ehf2.13094。
俄罗斯入侵乌克兰导致全球可再生能源增加。正如国际能源署发现的那样,“化石燃料供应中断凸显了国内生产的可再生电力的能源安全优势,导致许多国家加强支持可再生能源的政策?”在其他
简介 人工智能 (AI) 被认为是精准医疗和转型医疗保健的关键 (Denny and Collins 2021 )。与其他成像学科一致,例如显微镜 (Meijering 等人2016 ) 和病理学 (Colling 等人2019 ; Laak 等人2021 ),从常规临床程序中获得的图像代表了有关特定组织特征的丰富且可挖掘的数据集 (Gillies 等人2016 ; Aerts 等人2014 )。这一认识促使开发基于人工智能的技术来利用这些丰富的数据源 (Parmar 等人2018 ; Hosny 等人2018 )。尽管有关数据共享、数据安全和标准化的实际问题尚未解决 (He 等人2019 ; Currie 和 Hawk 2021 ),但人工智能的不断发展将推动其在医学成像领域的应用 (Currie 和 Rohren 2021 )。当谈到基于人工智能的技术在正电子发射断层扫描 (PET) 和单光子发射断层扫描 (SPECT) 等核成像模式中的应用时,最近的文献中提供了讨论特定模式潜力和局限性的出色评论 (Hatt 等人2021 ; Uribe 等人2019 ; Zukotynski 等人2021 ; Decuyper 等人2021 )。核成像模式的一个关键资产是它们的全身视野,因此能够量化针对涉及多个器官和组织的特定生物过程的示踪剂的分布。此外,核中的动态成像