对于由多个铬孔组成的分子系统,可以计算激发态,例如,使用多方面配置相互作用(MRCI)10或时间依赖性密度功能理论(TDDFT)。11然而,此类计算的成本随系统大小陡峭。这种蛮力方法的替代方法是使用简化的模型在高水平上计算单个发色团以及它们之间的相互作用。12,13个发色团可以在基于片段的方法中作为片段处理,其中一些含量为14-22,其中一些激子耦合23,24和DeLacalized激发25可以计算。激发耦合负责能量转移,而激发态的离域将光学过渡能的转移以及在分子聚集体上光谱中测得的振荡器强度的重新分布。
脑电信号(EEG)是由大量神经元产生的非线性、非平稳、随机的微弱信号,在人工智能、生物医学工程等领域具有重要的研究价值和实际意义,而脑电特征提取是直接影响处理结果的重要步骤,目前常用的脑电特征提取方法有频域或时域分析、时频结合等方法。由于脑电信号的非线性,上述方法都存在一定的局限性。因此,该文提出一种基于局部均值分解和Fisher规则的多尺度模糊熵用于人体运动分析中的脑电特征提取。首先将脑电信号自适应地分解为一系列乘积函数(PF)分量,然后选取有效的PF分量并计算多尺度模糊熵,利用多尺度模糊熵进行特征提取。利用Fisher规则对模糊熵在不同尺度上的特征分类能力进行排序,选取排序最高的多尺度模糊熵构成最优特征向量,实现特征降维。实验结果表明,该方法能有效提取脑电信号特征,验证了新方法的有效性和可行性。
摘要人类肠道菌群在出生后立即形成,对宿主的健康很重要。在第一个日子里,师生的细菌种类通常占主导地位,例如肠杆菌科。这些由严格的厌氧物种(尤其是双杆菌种类)继承。早期过渡到双杆菌物种与健康益处有关;例如,双杆菌物种抑制病原竞争者的生长并调节免疫反应。替代多杆菌被认为是由于辅助厌氧菌(包括肠杆菌科)在新生儿中存在于新生儿中的氧氧氧气所致。为了研究过渡到双杆菌物种的氧气耗竭,我们在这里引入了一个多尺度数学模型,该模型考虑了代谢,空间细菌种群动力学和交叉进食。使用Agora Collection的公开代谢网络数据,该模型从头开始模拟了严格和某些厌氧物种在肠道和氧气影响下的肠道状环境中的竞争。该模型预测,新生婴儿的殖民地内氧的个体差异可以解释观察到的与厌氧物种,尤其是双杆菌物种的术中观察到的个体变异。双杆菌种类通过使用双杆分流器在模型中变为模型,这使双杆菌可以切换为次优屈服代谢,并在高乳糖浓度下快速生长,如此处使用液压平衡分析。因此,计算模型使我们能够检验婴儿结肠中细菌定植和继承的假设的内部合理性。
摘要:高山环境易受气候变化影响,迫切需要准确建模和了解这些生态系统。过去十年来,使用数字高程模型 (DEM) 来获取代理环境变量的普及度不断提高,特别是因为 DEM 可以相对便宜地以非常高的分辨率 (VHR;<1 米空间分辨率) 获取。在这里,我们实现了一个多尺度框架,并比较了由光检测和测距 (LiDAR) 和立体摄影测量 (PHOTO) 方法产生的 DEM 衍生变量,目的是评估它们在物种分布建模 (SDM) 中的相关性和实用性。以瑞士西部阿尔卑斯山两个山谷的北极高山植物 Arabis alpina 为例,我们表明 LiDAR 和 PHOTO 技术均可用于生成用于 SDM 的 DEM 衍生变量。我们证明,PHOTO DEM 的空间分辨率至少为 1 米,其精度可与 LiDAR DEM 相媲美,这在很大程度上要归功于与市售的 LiDAR DEM 相比,PHOTO DEM 可以根据研究地点进行定制。我们获得了空间分辨率为 6.25 厘米 - 8 米(PHOTO)和 50 厘米 - 32 米(LiDAR)的 DEM,其中我们确定 SDM 中 DEM 衍生变量的最佳空间分辨率在 1 到 32 米之间,具体取决于变量和站点特征。我们发现 PHOTO DEM 范围的缩小改变了所有衍生变量的计算,这对它们的重新计算产生了特殊影响
- 我们实现并验证了一种针对基底神经节内和周围皮层下区域的脉冲网络模型的联合仿真方法,并将其与每个皮层区域的平均场网络模型相结合。 - 我们的模拟基于一个规范的连接组,包括皮层和基底神经节区域之间的详细路径,并结合了健康对照者和帕金森病患者的特定受试者优化权重。 - 我们通过证明所实现的模型在静息状态下显示出生物学上合理的动态来提供概念证明,包括虚拟患者的丘脑活动减少,以及虚拟深部脑刺激期间的丘脑活动正常化和主要在额叶区域的分布改变的皮层活动。 - 所提出的联合仿真模型可用于为个别患者定制深部脑刺激。摘要深部脑刺激 (DBS) 已成功应用于各种神经退行性疾病,作为一种有效的对症治疗。然而,它在大脑网络中的作用机制仍然知之甚少。许多虚拟 DBS 模型将基底神经节周围的子网络及其动态分析为脉冲网络,其细节由实验数据验证。然而,连接组学证据表明 DBS 的广泛影响影响了许多不同的皮质和皮质下区域。从临床角度来看,除了运动影响之外,DBS 的各种影响也已得到证实。神经信息学平台虚拟大脑 (TVB) 提供了一个建模框架,使我们能够虚拟地执行刺激(包括 DBS),并在进行 DBS 导线置入的侵入性手术之前从动态系统的角度预测结果。为了准确预测 DBS 的影响,我们实施了一个详细的基底神经节脉冲模型,并通过我们之前开发的联合仿真环境将其与 TVB 相结合。这
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2021年7月14日。; https://doi.org/10.1101/2021.07.14.452389 doi:biorxiv Preprint
摘要 - 婴儿过早出生或早产,可能会改变大脑的连接性,部分原因是分娩时的大脑发育不完整。研究还显示,与出生时完全成熟的同龄人相比,这些人进入青春期时,大脑的结构和功能差异。在这项研究中,我们研究了来自青少年脑认知发展(ABCD)研究的大约4600名青少年的多尺度功能连通性的功能网络能量,他们是早产或出生时的全学期。我们确定了三个关键的大脑网络,它们在早产和成熟受试者之间显示网络能量的显着差异。这些网络包括视觉网络(包括枕骨和枕骨子网),感觉运动网络以及高认知网络(包括颞叶和额叶子网)。此外,已经证明,与早产受试者相比,完善受试者表现出更大的不稳定性,从而导致功能性脑信息的动态重新配置更大,并在三个确定的规范大脑网络中提高了灵活性。相比之下,那些天生的过早表现出更稳定的网络,但在这些关键规范网络中功能性大脑信息的动态和灵活组织较少。总而言之,测量多尺度功能网络能量提供了对与出生的受试者相关的规范大脑网络的稳定性的见解。这些发现增强了我们对早期出生如何影响大脑发育的理解。索引术语 - 早产学科,完整学科,多尺度功能连接,功能网络能量,大脑发展
Registration form 8.30-9.00 Reception and registration 9.00-9.20 Institutional welcome - Delegate to Research (Federico Forneris UNIPV) and Director of Center for Health and Technology (Riccardo Bellazzi UNIPV) 9.20-9.50 Introduction - Computational neuroscience in MNESYS and The computational framework for multiscale brain modelling (Egidio D'Angelo and Sergio Martinoia, UNIPV, UNIGE)9.50-10.30全体讲座 - 从数据推断突触可塑性规则的策略
摘要。要实现能够在自然行为期间跨多个时空尺度进行长期神经记录的神经技术,需要新的建模和推理方法,这些方法可以同时解决两个挑战。首先,这些方法应该从多个记录源(例如脉冲和场电位)汇总所有活动尺度的信息。其次,这些方法应该检测自然场景和长期记录期间行为和/或神经动力学状态的变化。先前的状态检测方法是针对单一活动尺度而不是多尺度活动开发的,先前的多尺度方法没有考虑状态切换并且适用于静止情况。在这里,我们通过开发切换多尺度动力系统模型和相关的过滤和平滑方法来应对这两个挑战。该模型描述了多尺度尖峰场活动中未观察到的大脑状态的编码。它还允许使用未观察到的状态状态进行状态切换动力学,该状态决定每个时间步的动态和编码参数。我们还设计了相关的切换多尺度推理方法,从同时发生的尖峰场活动中估计未观察到的状态和大脑状态。我们在大量数值模拟和记录在猴子身上的前额叶脉冲场数据中验证了这些方法,猴子为了获得流体奖励而进行扫视。我们表明,这些方法可以成功地结合脉冲和场电位观测,同时准确地跟踪状态和大脑状态。这样,与单尺度切换方法或固定多尺度方法相比,这些方法可以更好地估计状态。这些建模和推理方法有效地结合了状态检测和多尺度观测。因此,它们可以促进对潜在切换神经群体动态的研究,并通过在出现状态依赖的多尺度活动和行为的自然场景中进行推理来改善未来的脑机接口。