我们为固定电池系统提出了一种多尺度模型预测控制 (MPC) 框架,该框架利用高保真模型来权衡能源和频率调节 (FR) 市场提供的短期经济激励与长期退化效应。我们发现 MPC 框架可以大幅减少长期退化,同时正确响应 FR 和能源市场信号(与使用低保真模型的 MPC 公式相比)。我们的结果还证明,可以使用现代非线性规划求解器将复杂的电池模型嵌入闭环 MPC 模拟中(我们在 Julia 中提供了一个高效且易于使用的实现)。我们利用从模拟中获得的见解来设计一个低复杂度的 MPC 公式,该公式与使用高保真模型获得的行为相匹配。这是通过设计一个合适的终端惩罚项来实现的,该惩罚项隐式地捕获长期退化。结果表明,通过正确设计成本函数,可以在低复杂度 MPC 公式中解释复杂的退化行为。我们相信,我们的概念验证结果具有工业意义,因为电池供应商正在寻求参与快速变化的电力市场,同时保持资产完整性。
。CC-BY-NC-ND 4.0 国际许可,未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 5 月 10 日发布。;https://doi.org/10.1101/2020.05.08.084947 doi:bioRxiv 预印本
摘要 —卷积神经网络(CNN)在高光谱图像表示方面表现出色,并在高光谱图像分类中取得了良好的效果。然而,传统的 CNN 模型只能对具有固定大小和权重的规则方形图像区域进行卷积,因此,它们不能普遍适应具有各种对象分布和几何外观的不同局部区域。因此,它们的分类性能还有待提高,特别是在类边界方面。为了弥补这一缺点,我们考虑采用最近提出的图卷积网络(GCN)进行高光谱图像分类,因为它可以对任意结构的非欧几里得数据进行卷积,适用于由图拓扑信息表示的不规则图像区域。与常用的在固定图上工作的 GCN 模型不同,我们使图能够动态更新
缩写:FCN = 完全卷积神经网络;MSE = 均方误差;SSIM = 结构相似性指数在 MRI 检查期间,患者运动会导致伪影,而伪影是临床实践中造成图像质量下降的常见原因,据报道,这会影响 10% – 42% 的脑部检查的图像质量。1、2 在图像采集时可能会识别出对 MRI 检查诊断价值有重大影响的运动伪影,导致近 20% 的 MRI 检查出现重复序列。1、3 这些重复序列会给放射科带来大量的时间和财务成本。1 由于无法保证患者在重复序列期间能够更好地保持静止,因此图像的诊断价值往往会受到影响。
摘要 机器学习越来越被认为是生物、生物医学和行为科学领域一项很有前途的技术。毫无疑问,这项技术在图像识别方面取得了巨大的成功,并可直接应用于电生理学、放射学或病理学等诊断领域,在这些领域我们可以获得大量带注释的数据。然而,机器学习在预后方面往往表现不佳,尤其是在处理稀疏数据时。在这个领域,基于经典物理的模拟似乎仍然无法替代。在这篇综述中,我们确定了机器学习和多尺度建模在生物医学科学中可以相互受益的领域:机器学习可以以控制方程、边界条件或约束的形式整合基于物理的知识,以管理不准确问题并稳健地处理稀疏和噪声数据;多尺度建模可以整合机器学习来创建代理模型,识别系统动态和参数,分析敏感性,并量化不确定性以弥合尺度并理解功能的出现。着眼于生命科学领域的应用,我们讨论了机器学习与多尺度建模相结合的最新技术,确定了应用和机会,提出了未解决的问题,并解决了潜在的挑战和局限性。我们预计它将激发计算力学界的讨论,并触及数学、统计学、计算机科学、人工智能、生物医学、系统生物学和精准医学等其他学科,共同努力为生物系统创建强大而高效的模型。
缩写:FCN = 完全卷积神经网络;MSE = 均方误差;SSIM = 结构相似性指数在 MRI 检查期间,患者运动会导致伪影,而伪影是临床实践中造成图像质量下降的常见原因,据报道,这会影响 10% – 42% 的脑部检查的图像质量。1、2 在图像采集时可能会识别出对 MRI 检查诊断价值有重大影响的运动伪影,导致近 20% 的 MRI 检查出现重复序列。1、3 这些重复序列会给放射科带来大量的时间和财务成本。1 由于无法保证患者在重复序列期间能够更好地保持静止,因此图像的诊断价值往往会受到影响。