主持人是neuton源的最重要组成部分。它的作用是减慢从目标(基于加速器的中子来源)或反应器中渗出的中子,或对材料研究所需的非常低的能量。从历史上讲,专门用于中子散射实验的第一个新来源使用了热中子。如今,由于其对材料研究的显着优势,因此中子源的冷(和超低)中子的产生越来越多。液体 /固体氘(D 2),液体氢(H 2)和碳氢化合物(例如,液化 /甲烷)是反应堆和基于加速器的冷中子源的主持材料的标准选择。所有这些材料具有非常好的中子变化特性,但也具有严重的缺点:在液态氢或有限使用碳氢化合物材料的情况下,在高功率中子源中使用有限的中子能量范围(质子密度相对较低),因为它们容易受到严重辐射损害。因此,在世界各地正在积极寻找一种新型的调制材料,尤其是低温主持人的材料。在本文中,提出了与寻找新的中子调整材料有关的ISIS中子和MUON来源[1]的持续活动。
摘要 - 自2008年以来,紧凑型MUON电磁阀(CMS)检测器磁铁一直在CERN的大型强子对撞机(LHC)上运行。它必须运行,直到高亮度LHC运行到2040年以后。CMS磁铁包含一个大型超级导电螺线管,可提供3.8 t的磁场,直径为6 m,长度为12.5 m。线圈由铝制稳定的Rutherford NB-TI/CU电缆构建,并在4 K下以沸腾模式下的间接传导冷却,并用沸腾的氦气进行沸腾模式。磁铁在2006年在Cern Point 5的Surface Hall委托。随后在2007年将其转移到地下实验区域,从那时起,它被推荐并成功地以3.8 T的名义字段进行操作。在本文中介绍了磁铁操作数据的摘要,以及观察到的纯铝导体稳定剂的残余电阻率比(RRR)的进行性变化,这是操作周期和磁铁热身的函数。描述了遇到的技术问题,以及用低温和真空抽水实现的解决方案,以及在控制系统的LHC关闭期间进行的升级,低温和供电电路,该电路已实施了自由轮晶状体系统。
1-极端光线基础设施ERIC,Eli Beainines设施,多尔尼·布雷扎尼(Dolni Brezany),25241,捷克共和国2-劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory),美国CA 94550,美国3-美国第3--马里兰大学校园,美国马里兰州大学公园,美国4-2074年,美国4-550,美国4-20742 Collins,CO,CO,80523,美国5-劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利6-洛克希德·马丁公司7 -XUV Lasers Inc,Collins Fort Collins,CO 80527,美国
该研讨会旨在与社区内的宇宙射线测量和分析以及其他感兴趣的科学家,政策制定者和行业代表分享知识和最新进展的机会。该研讨会的主要目标是(1)在部署低成本且可靠的宇宙射线探测器网络(每个探测器中都有多个传感器)来发起努力,以监视全球范围内实时时间的宇宙射线通量变化,以及(2)以加强与宇宙射线射线数据的诠释,并在新的研究中进行了新的研究,并在新的研究中进行了新的研究和新的研究。
本演示文稿可能包含基于我们的信念和假设以及目前仅在本介绍之日起提供的信息的“前瞻性”陈述。前瞻性陈述涉及已知和未知的风险,不确定性和其他可能导致实际结果与前瞻性陈述的预期或暗示的因素。有关可能导致或促成此类差异的这些因素的进一步信息包括但不限于标题为“风险因素”中讨论的这些因素,这是我们最新的10-K表格和其他证券和交易委员会文件中的季度报告中所述的。我们不能保证我们将在我们的前瞻性陈述中实现计划,意图或期望,并且您不应过分依赖我们的前瞻性陈述。有关新产品,功能或功能的信息旨在概述我们的一般产品指导,不应仅出于信息目的而依靠,并且不应将其纳入任何合同中,而不是承诺,承诺或法律义务来提供任何材料,代码或功能。为我们的产品所描述的任何功能或功能的开发,释放和时机仍由我们自行决定。我们不承担更新前瞻性陈述的义务,也不打算更新。
在 NEVOD-DECOR 实验中,研究了介子束的能量特性,旨在解决“介子之谜”(与计算结果相比,宇宙射线中多介子事件过多)。实验装置包括一台切伦科夫水量热器和一台坐标跟踪探测器。介子束的能量沉积是通过 NEVOD 量热器的响应来测量的,坐标跟踪探测器 DECOR 可以确定束中的介子数量及其到达方向。实验获得了 10 PeV 至 1000 PeV 范围内的介子束中平均能量及其对天顶角和初级能量依赖性的估计值,并与使用基于 CORSIKA 软件包的模拟计算结果进行了比较,模拟使用了 QGSJET-II-04 和 SIBYLL-2.3c 强子相互作用模型。
使用MUON自旋弛豫(µ SR)研究了重新调节聚(3-己基噻吩)P3HT的分子动力学。µ SR光谱对纵向磁场(B LF,平行于初始MUON自旋方向)的响应表明,植入的Muons形成了均位于噻吩环和Diamagnetic态的粘性自由基,并具有可比的产率。此外,自由基中的未配对电子经历了与噻吩和邻近质子结合的muon相互作用,它们的发光可以作为分子动力学的量度。在几个温度下以详细测量在几个温度下测量的纵向muON自旋松弛率(1 / t 1 µ)的B LF依赖性被发现由局部敏感性j(ω)很好地再现,这些频谱密度j(ω)源自局部易感性,这些易感性均来自于纳维利亚(Havriliak-Negami)(Havriliak-Negami(H-N)功能中使用,该函数(H-n)函数(H-N)均为1(H-N)的分析(H-N)。 〜ν)δ]γ(其中〜ν是平均漏气率,0 <γ,δ≤1)。发现,发现从1 / T 1 µ分析中推导的温度依赖性的大小与13 c-nmr建议的己基链和噻吩环的运动一致。目前的结果标志着将µ SR应用于复杂系统动力学的方法论里程碑,并在诸如聚合物之类的广泛时间尺度上具有共存的频率。