摘要。这项工作描述了一条在线处理管道,旨在在没有粒子探测器的外部触发器的连续数据流中识别异常。处理管道始于局部重构算法,在FPGA上采用神经网络作为其第一阶段。使用GPGPU加速了随后的数据制备和异常检测阶段。作为对异常检测的实际证明,我们使用宇宙μ子检测器开发了数据质量监测应用程序。其主要目标是检测与检测器的预期操作条件的偏差。这是可以在大型粒子物理实验中使用的系统的概念验证,从而可以在偏置减少的数据集上进行异常检测。
hree几十年以来,Atlas和CMS合作提交了用于探测器的建造的意向书,这些技术和工程的奇迹正在为他们迄今为止最大的大修做好准备。从2029年开始,高光度LHC将在许多标准模型测量上提供次级精度,但前提是检测器可以完全利用更复杂和更高率的碰撞碰撞。涉及来自许多国家的成千上万的物理学家和工程师,主要是在2026 - 2029年的长时间关闭3号中安装,许多“ II期”升级将检测器技术推向新的高度。对于地图集,它们包括最先进的全硅内部跟踪器,一种新的高粒度定时探测器,新的和升级的向前和亮度探测器,改进的MUON覆盖范围,更快的触发器和数据激发系统以及新的Calorimeter读取电子读取器(P22)。在CMS中,跟踪器和量热计的端盖将被创新的新系统替换,将安装新的最小离子定时探测器和亮度检测器,几乎所有电子设备将被替换,并将安装其他MUON向前电台(P33)。爱丽丝和LHCB也是2030年代的重大升级,这将在即将到来的问题中进行探讨。同时,LHC不断进行破坏记录:11月28日,CERN年度末期技术停止的时期看到,质量质子 - 质子亮度的峰值达到2.5×34 cm –2 s –1,铅核之间的测试碰撞和铅核之间的测试碰撞发生为5.36 TEV TEV TEV TEV(P11 P11)。此问题还可以回顾一下 - 在40年前(p41)中发现W和Z玻色子,并在30年前的Cern Theory Theory orridors中的芝麻光来源(P28)(p28)中发现 - 并展示了Accelerator科学的应用。使用新型Proton Linac系统的英国公司高级肿瘤学正在准备治疗其第一批患者(P8)。法国公司Theryq加入了CERN和Lausanne University Hospital之间的合作,使用电子(P8)开发Flash放射疗法。和CERN已与空客合作,探索未来氢能飞机(P9)的超导技术。
抽象的化石燃料满足了人类大部分能量需求,由于其高碳排放而导致气候变化。有两种类型的能源可以替代化石燃料:可再生和核能。核能来源在效率和可持续性方面更有优势。由于脑尿液的产生要低得多,将th th的用作融合反应堆中的核燃料将有助于减少放射性废物。融合反应器被认为是有希望的,仍处于研发阶段。在这方面,混合融合 - 融合反应器似乎更有希望,而最近提出的Muon催化的DD融合与级联反应器的组合值得赞赏。在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。 关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1. 简介在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1.简介
日本穆恩和梅森科学学会 /聚合物科学学会,日本 /日本纤维科学与技术学会,日本 /日本磁学会 /日本电气工程师 /日本晶体学学会 /日本金属与材料研究所 /日本材料学会 /日本科学社会 /材料学会 /材料学会,日本制药学会 /日本化学学会 /日本铁与钢铁学院 /日本同步辐射研究学会 /日本物理学会 /日本应用物理学 /日本蛋白质科学学会的日本非毁灭性检查学会 /日本生物物理学学会 /日本生物物理学社会 /日本的生物物理学社会 /日本高级实验 /核实验>日本的生物物理学 /核实验>
1. 执行摘要 当前,业界正在考虑的未来 HEP 设施(如μ子对撞机或下一代高能强子对撞机)将需要达到现有技术极限甚至超越现有技术能力的磁铁。从历史上看,先进磁铁技术的开发和成熟度展示可用于当前的 LHC 升级(称为高亮度 LHC 升级,HL- LHC),这得益于美国为期约 15 年的国家定向研发计划(称为 LHC 加速器研究计划,LARP)与通用和互补的研发工作(导体开发计划、通用加速器研发 GARD、大学计划等)的结合。在本白皮书中,我们建议建立一个类似的前沿技术和可行性指导计划(LEAF 计划),为在未来十年的时间范围内做出未来的对撞机决策做好准备。与其前身一样,LEAF 计划将依赖并协同目前美国由磁体开发计划 (MDP)、导体采购和研发 (CPRD) 计划和 HEP 办公室由早期职业奖 (ECA) 或实验室指导研发 (LDRD) 基金资助的其他活动所涵盖的通用研发工作。在可能的情况下,将强调与 DOE 或 NSF 其他办公室的协同努力的联系,并建议将其作为国家范围内更广泛的合作努力。国际努力也被提及为 LEAF 计划的潜在合作伙伴。我们设想 LEAF 计划将专注于展示用于 μ 子对撞机以及下一代高能强子对撞机的磁体的可行性,并在必要时并根据应用性质的要求,从研发模型过渡到长模型/原型。LEAF 计划将自然而然地推动加速器质量和实验界面设计方面的考虑。必要时,LEAF 还将专注于降低成本和/或工业化步骤。LEAF 计划预计将是一项为期十年的努力,始于 2024-2025 年左右,于 2034-2035 年左右完成。根据支持者的经验,我们建议 LEAF 计划的适当资助水平应为每年约 2500-3000 万美元,适用于所有参与者(美国国家实验室和大学)。
Geoptic 的隧道μ子勘测服务使铁路资产工程师能够从隧道顶部到地面查看和用 X 射线检查覆盖层。鉴于英国铁路隧道的平均使用年限约为 170 年,旧的隐蔽施工竖井对隧道的完整性构成了重大威胁,尤其是在竖井位置不明且由于气候变化导致降雨量增加的情况下。在过去两年中,Geoptic 与 Network Rail 的一级供应商合作,对网络上超过 10 公里的隧道进行了勘测,并发现了许多隐蔽竖井,其中一些可追溯到 Brunel 建造网络的时期。为了加快隧道的完工速度,这些历史悠久的施工竖井是人工挖掘的。就在隧道完工前,隧道沿线的一些施工竖井将在地面和隧道处密封。如果您站在隧道内或地面上,通常看不到竖井就在附近的迹象。
HE 中微子天文学望远镜要求将光学传感器部署在大量水体上方(因为中微子相互作用率低)和很深的地方(因为宇宙射线介子背景)。这必然会导致光电倍增管阵列,每个光电倍增管都位于玻璃压力球内,并且距离组合信号受到高水平触发的位置很远。虽然所有 HE ν 望远镜都具有这两个共同特征,但信号处理电子设备的设计解决方案可能会有很大差异,具体取决于介质是水还是冰,以及特定站点的物流。本文介绍了正在阿蒙森-斯科特南极站建造的望远镜 IceCube 的电子设备。完工后,IceCube 将由至少 70 根弦组成,每根弦有 60 个光学模块。大约一立方公里的冰将在 1450 米至 2450 米的深度之间安装仪器(图 1)。在 2004-2005 年南半球夏季,第一条 IceCube 线路与四个站点一起部署
深处的实验室基础设施已广泛用于探索罕见事件,例如质子衰减,暗物质搜索或中微子相互作用,利用了它们的大型MUON液压减少。但是,只有很少的研究评估了低背景辐射环境对生物体的影响。以此目的,Canfranc地下实验室(LSC)于2021年推出了生物学平台,为批准的生物学实验提供了实验室空间。已经建立了两个相同的实验室(地下和表面),以在相同条件下复制生物学实验,主要区别是宇宙辐射背景。使用LSC设施的访问协议包括每年两个打开的电话,并为执行实验程序分配了时间窗口,这导致了第一个批准并已经运行的实验。我们描述了Canfranc生物学平台的科学计划,该计划探讨了极端粒子,病毒感染,免疫系统,多细胞性,发育或衰老的宇宙沉默以及第一个实验结果。该平台还允许在没有辐射的情况下观察生命对微重力的反应,这是探索太空生命的关键条件。
粒子物理学有着宏伟的目标,即揭示现实的最基本成分,并破译这些成分相互作用的规则。这些规则包括量子力学,而基本成分似乎是量子实体。例如,在标准模型中,我们讨论相对论量子场的激发,这些场以固定的量子数(如质量、自旋和各种电荷)为特征。此外,在粒子物理实验中,我们有能力产生某些量子数的量子叠加态。例如,费米实验室各种光束中由介子衰变产生的(μ 子)中微子处于(至少)三个不同中微子质量本征态的量子叠加态中,并且该叠加态会随着通常的量子幺正时间演化而变化,由算符 exp (− 𝑖𝐻𝑡 ) 表示,其中 𝐻 是中微子哈密顿量。因此,中微子振荡实验是研究宏观尺度上量子信息时间演化的一个例子。
粒子物理学有着宏伟的目标,即揭示现实的最基本成分,并破译这些成分相互作用的规则。这些规则包括量子力学,而基本成分似乎是量子实体。例如,在标准模型中,我们讨论相对论量子场的激发,这些量子场以固定的量子数(如质量、自旋和各种电荷)为特征。此外,在粒子物理实验中,我们有能力产生某些量子数的量子叠加态。例如,费米实验室各种光束中由介子衰变产生的(μ 子)中微子处于(至少)三个不同中微子质量本征态的量子叠加态中,并且该叠加态会随着通常的量子幺正时间演化而变化,由算符 exp (− 𝑖𝐻𝑡 ) 表示,其中 𝐻 是中微子哈密顿量。因此,中微子振荡实验是研究宏观尺度上量子信息时间演化的一个例子。