可以通过考虑电子废料、风力涡轮机和汽车应用等各种来源来估算德国和欧洲其他地区的 NdFeB 磁体的回收潜力,尽管在某些情况下预期的吨位差异很大。需要建立有效的 NdFeB 磁体收集和返回系统以提高回收率。目前,德国没有大量的报废 NdFeB 磁体交易。NdFeB 磁体回收还面临着物流挑战。这些挑战包括废物流的异质性、含磁体产品的生命周期不同以及小部件难以自动拆卸。再生磁体的价格与原始磁体的价格密切相关,而原始磁体的价格又严重依赖于稀土元素的价格。本研究概述了德国及其他地区参与磁体回收的公司和初创企业。
摘要:与传统注塑工艺相比,基于挤压的聚合物复合磁体的增材制造可以增加固体负载体积分数,并通过打印喷嘴产生更大的机械力。约 63 vol% 的各向同性 NdFeB 磁体粉末与 37 vol% 的聚苯硫醚混合,并在使用大面积增材制造时制造粘结永磁体,而磁性能没有任何下降。聚苯硫醚粘结磁体的拉伸应力为 20 MPa,几乎是尼龙粘结永磁体的两倍。增材制造和表面保护树脂涂层粘结磁体满足高达 175 ◦ C 的工业稳定性标准,1000 小时内的通量损失为 2.35%。与无涂层磁体相比,它们在酸性溶液(pH = 1.35)中暴露 24 小时并在 80 ◦ C 下退火 100 小时(相对湿度为 95%)时也表现出更好的耐腐蚀行为。因此,聚苯硫醚粘合、增材制造、保护性树脂涂层粘合永磁体具有更好的热性能、机械性能和磁性。
抽象激光粉床融合(L-PBF)是一种增材制造技术,它提供了创建复杂的NDFEB磁铁的机会,并有可能提高其性能。l-PBF具有自己的加工挑战,例如由于快速冷却而引起的孔隙率/裂纹和热应力。这项研究的重点是优化参数和使用升高温度(300-550°C)粉末床加热以减少缺陷的产生。This paper includes a detailed process parameter investigation, which revealed samples with a maximum energy product, (BH) max , of 81 kJ/m 3 (remanence, B r 0.72 T; coerciv- ity, H ci 891 kA/m) without post/pretreatment, which are the highest (BH) max and B r for L-PBF-processed NdFeB commercial powder.据观察,所有高磁性样品都具有高密度,但并非所有高密度样品都具有高磁性。SEM图像和讨论在学术上是有价值的,因为它们清楚地说明了融化池中谷物形成和形态,文献提供了有限的讨论。此外,本文结合了定量相分析,表明磁性特性随着强磁相ND 2 Fe 14的增加而增加。本文的另一个重要贡献是,它是第一个研究加热床对L-PBF-NDFEB合金的影响的研究。通过使用高架粉末床加热,可以改善样品和B r的密度,而H C降低。(BH)最大也可以通过高架粉末床加热从55 kJ/m 3提高。使用加热床(400°C)获得的最大磁性特性如下:B r,0.76 t; H CI,750 ka/m; (BH)Max,84 kJ/m 3。
在 Sm Co 型磁体中,矫顽力随温度的下降通常比 NdFeB 小得多。而且,与 NdFeB 材料相比,化学和微观结构的变化可以进一步将矫顽力的可逆温度系数 (RTC) 降低到非常低的值。一些报告甚至表明矫顽力在有限的温度范围内增加。因此,可以在高温下实现高矫顽力,而不会在室温下产生过大的矫顽场。标准 Recoma 28HE 在 20 至 300°C 之间的 RTC(H) 约为 0.26%/K,而高 cJ 温度等级 Recoma HT520 仅为 0.14%/K。虽然 Recoma HT 等级的室温矫顽力可能明显低于我们的标准等级或高温 NdFeB 等级,但它们可以在更高的温度下使用。
研究发现,在研究期间,NdFeB 磁体的性能得到了显著改善。此外,研究表明,磁体体积大,体积大,而且可拆卸。此外,研究时的残值为 11-12 美元/公斤。消磁、拆卸和运输成本约占其中的三分之一。生命周期评估表明,通过回收 NdFeB 磁体,可以避免需要大量酸和能量的生产步骤,从而“缩短”生产循环,并最终获得影响较小的磁体。然而,由于设计要求,新涡轮机的闭环再利用是不可能的。
由外部磁场造成的软机器因其与生物体和复杂环境相互作用的潜力而引起了显着关注。但是,它们的适应性和功能通常受到操作过程中刚性磁化的限制。在这项工作中,我们在操作过程中引入了动态可重编程的磁性软计算机,并通过各种磁场的协同作用在操作过程中进行原位重新确定的磁化功率。可振荡的谐振电路集成到机体中,从而通过不同频率的高频频率实现了对特定区域的可寻址和可感知的加热。机身由由低熔点合金和NDFEB微粒制成的微型头。加热时,合金液体会固定,允许在40吨脉冲编程场下旋转NDFEB微粒。冷却后,新的配置被锁定在适当的位置。此重编程过程对于单个或多台机器同样有效,从而实现了多种机器的多种模式变形和多个机器的合作。此外,通过结合可寻址的热致动,我们将示意多个机器人的原位组装。这项工作可能使具有增强功能的磁性软计算机可以实现。
摘要:将永久微磁体单片集成到 MEMS 结构中可为磁性 MEMS 应用提供诸多优势。一种名为 PowderMEMS 的新技术已用于在 8 英寸晶圆上制造永久微磁体,该技术基于通过原子层沉积 (ALD) 聚集微米级粉末。在本文中,我们报告了由两种不同 NdFeB 粉末粒径制备的 PowderMEMS 微磁体的制造和磁性特性。在 75 ◦ C 的低 ALD 工艺温度下实现了 423 mT 的剩磁和 924 mT 的固有矫顽力,使该工艺与 MEMS 技术兼容。借助 Wohlfarth 方程讨论了微磁体中的磁可逆机制。为了确保这种集成微磁体在不同应用环境中的可操作性,我们进行了一系列实验,系统地研究了热稳定性和腐蚀稳定性。粉末颗粒尺寸较大(d50 = 25 µ m)的 NdFeB 微磁体在空气中表现出较高的热稳定性。此外,通过等离子体增强化学气相沉积 (PECVD) 沉积的额外氧化硅钝化层显著提高了微磁体的腐蚀稳定性。所给出的结果证明了 PowderMEMS 微磁体的耐用性,使其能够应用于微流体、传感器、执行器和微电子等各个领域。
具有维持其磁化能力的永久磁铁,即,在高温下,称为强制性的证券是为服务快速生长的清洁能源技术(例如电动汽车和风能)服务的关键材料。[1-3]但是,改善当前使用的NDFEB和SMCO 5磁体的高温磁性特性是具有挑战性的。为了进一步提高工作温度,固定型磁体,其中固定性是由晶粒内纳米沉淀物在纳米沉淀物上的固定固定而产生的,是最有吸引力的候选者。[4-6]例如,由于其高质量温度和出色的温度稳定性,因此SM 2 CO 17的磁铁是在300°C以上使用的电动机中使用的唯一可以使用的罐。[7–11]通常认为其矫正性是由谷物内的纳米级细胞微结构而仅通过域钉钉来控制的
自上任第一天起,拜登总统就致力于建立对我们的国家安全、经济安全和竞争力至关重要的弹性和多样化的供应链。2021 年 2 月,拜登总统签署了关于美国供应链的第 14017 号行政命令,指示对包括稀土元素在内的关键矿产供应链进行为期 100 天的审查。作为总统指示解决关键矿产供应链脆弱性的行动的一部分,商务部长(“部长”)根据经修订的 1962 年《贸易扩展法》第 232 条(“第 232 条”)进行了调查。这是拜登-哈里斯政府发起的第一次第 232 条调查。调查发现,钕铁硼磁体进口威胁到该法规定义的国家安全。总统同意部长的调查结果。
图4(a)磁性纳米颗粒簇的水分散液的光学显微镜图像(比例尺:20μm); (c)在2 ml玻璃容器中以10 mg/ml的浓度在水性分散体中的多色磁性纳米颗粒簇的视觉外观,以及(d)反射光谱的相应变化具有不同的EMF强度,通过改变样品和NDFEB Magnet之间的近距离来调节。 (e)将磁性纳米颗粒簇水液滴包裹在PDMS(聚二甲基硅氧烷)膜中,以及(f)使用硅胶毛细管填充的磁性纳米粒子簇在10 mg/ml中的磁性纳米颗粒分散剂的磁性纳米粒子散发的中国结设计,表现出蓝色的界面,呈蓝色的范围,远距离呈蓝色的范围。栏:1厘米)(经参考书的许可[44];版权(2021)皇家化学学会)。