2021年3月,摘要澳大利亚的国家电力市场在世界上最长,最弦的传输网络之一中运营。2016 - 2020年的投资超级循环(其中有13,000兆瓦的可再生能源)逐渐揭示了可再生工厂网络托管能力的限制。在本文中,分析了由超级循环引起的副作用。可再生投资失败的大多数来源与系统强度恶化有关,即。相关的连接滞后,补救和削减成本。尽管一个多区域市场,但NEMS的位置投资信号仍然明显强大。更改节点安排可能会提高调度效率,但更大的政策问题正在迅速降低网络托管能力的新可再生能源,不完善的调节和与增强相关的监管滞后。市场参与者寻求比监管框架允许的更快。可再生能源区(REZ)通过i)进行了检查。由消费者资助的监管模型和II)。可再生发电机资助的市场模型。“超大规定的夹层”设施被视为REZ资本资金的关键要素。它构成了优化基于市场的REZ传输增强和中等赞助商瞬态不足的风险的手段。关键词:电力,可再生能源区,传输投资,位置投资信号。JEL分类:D25,D80,G32,L51,Q41。该工作文件的同行评审版本随后发表为:Simshauser,P。(2021),“澳大利亚国家电力市场的可再生能源区”,《能源经济学》,第101卷,第105446页。
首字母缩略词 定义 ACS 美国社区调查 AEO 年度能源展望 ANL 阿贡国家实验室 ASHP 空气源热泵 ATB NREL 年度技术基准 BEV/EV 电池 电动汽车/电动汽车 BTU 英热单位 CAP 气候行动计划 CCS 碳捕获与封存 CEJA 气候与公平就业法案 CETLs 容量紧急转移限制 CO2e 二氧化碳当量 CUB 公民公用事业委员会 DAC 直接空气捕获 DOE 能源部 EDF 环境保护基金 EIA 能源信息管理局 ELCC 有效承载能力 ELPC 环境法和政策中心 EMAAC 东中大西洋地区委员会 EPA 环境保护署 FEJA 未来能源就业法案 GHG 温室气体 GSP 州生产总值 HFCs 氢氟碳化物 ICE 内燃机 IECC 国际节能规范 IPA 伊利诺伊州采购局 IPPU 工业过程和产品使用 IRA 通货膨胀削减法案 LDV/MDV/HDV 轻型/中型/重型车辆 锂离子锂离子 LOLP 负载损失概率 LSE 负荷服务实体 LULUCF 土地利用、土地利用变化和林业 MISO 中部大陆独立系统运营商 MMT 百万公吨 MSW 城市固体废物 NEMS 国家能源建模系统 NETs 负排放技术 NPV 净现值 NQC 净合格容量 NRDC 自然资源保护委员会
随着近年来微纳加工技术的快速发展,纳米薄膜[1–8]的基础研究及其在电子/光电子[3,8,9]、微纳机电系统(MEMS/NEMS)[6,10]和光学[11,12]等领域的应用已成为一个具有巨大潜力和机遇的领域。同时,纳米薄膜技术正逐渐广泛深入人们的日常生活,在现代智能社会的发展中发挥着越来越重要的作用。例如,基于纳米薄膜技术的微电子器件(如手机、笔记本电脑和可穿戴设备)作为人工智能技术中生命信号采集和传输的物理载体,集成的功能越来越多,尺寸却不断减小[13,14]。然而,纳米膜在微电子领域的应用主要集中在二维微纳结构和平面器件上。纳米膜的二维布局可能不利于实现进一步的性能提升或满足某些场景下的特定关键要求[13,15–17],如空间光调制[18]、具有高Q值的非传统近场通信(NFC)[19,20]和高效能量收集器[21]。发展将纳米膜转化为三维微纳结构的技术可以绕过平面设计中遇到的一些挑战,为实现器件设计的多样性、更好的性能和更先进的功能提供了可行途径[22,23]。然而,三维微纳结构的制备存在许多技术挑战[24]。在过去的几十年里,人们投入了大量的努力来开发新的制造方法,三维纳米膜的制备也取得了重大进展。在这些方法中,二维到三维的组装方法脱颖而出,由于其与现代平面制造具有良好的兼容性等固有优势而受到广泛关注
c 1核心EE511数字VLSI系统3 0 6 2核心EE512嵌入式系统3 0 6 3 3核心EE513模拟和混合信号系统3 0 6 4核心EE514高性能计算系统3 0 0 6 5 0 6 5 0 0 0 4 8 project EE518 project 1 24 9 project EE519 project 2 24 10 Elective EE505 VLSI Testing and Verification 3 0 0 6 11 Elective EE506 Fault Tolerant Systems 3 0 0 6 12 Elective EE507 Modeling & Simulation of MOS Devices 3 0 0 6 13 Elective EE508 Intelligient Visual Surveillance System 3 0 0 6 14 Elective EE509 VLSI DSP 3 0 0 6 15 Elective EE510 FPGA Based system Design 3 0 0 6 16 Elective EE520 Advanced Digital Signal Processing 3 0 0 6 17 Elective EE525 Digital Image Processing 3 0 0 6 18 Elective EE527 Pattern Recognition and applications 3 0 0 6 19 Elective EE540 Radio Frequency Integrated Circuits 3 0 0 6 20 Elective EE563 VLSI Architectural Design and Implementaion 3 0 0 6 21 Elective EE570 Real time and Embedded Operating Systems 3 0 0 6 22 Elective EE571 Network on Chip 3 0 0 6 23 Elective EE572 Low Power Circuits and Systems 3 0 0 6 24 Elective EE573 VLSI Technology 3 0 0 6 25 Elective EE574 Bio Sensors and Circuits 3 0 0 6 26 Elective EE575 Embedded System Integration 3 0 0 6 27 Elective EE576 System-on-Programmable-Chip Design 3 0 0 6 28 Elective EE577 Sensors and Actuators 3 0 0 6 29 Elective EE578 MEMS 3 0 0 6 30 Elective CS557 Cryptography 3 0 0 6 31 Elective CS509 Cyber Physical Systems 3 0 0 6 32 Elective CS528 CAD for VLSI 3 0 0 6 33 Elective CS553 Hardware Security 3 0 0 6 34 Elective PH515 MEMS&NEMS 3 0 0 6 35选修课HSS5XX 2 0 0 4
MohammadMahdi Ariannejad 博士目前是厦门大学马来西亚分校的讲师。他是马来西亚工程委员会 (BEM) 的注册毕业工程师、马来西亚工程师学会 (IEM) 的毕业会员、MIET 会员、马来西亚技术委员会会员和电气与电子工程学会会员。他于 2010 年获得伊朗大学电气工程-电子工程学士学位。他于 2013 年获得马来西亚国立大学理学硕士学位 (微电子学),并于 2019 年获得马来西亚马来亚大学光子工程博士学位。他于 2015 年在马来亚大学光子研究中心担任研究助理。他在光孤子通信、激光物理、光子学、非线性光纤和纳米技术领域发表了 30 多篇期刊/会议论文和书籍/章节。他于 2020 年 3 月加入厦门大学马来西亚分校,担任电气与电子工程系讲师。 研究兴趣 超快激光、多波长激光、光调制器、基于光子学的微波、波导设计、镜像谐振器、非线性光学、微纳米制造(MEMS 和 NEMS)、硅和聚合物波导制造、太阳能电池制造、CPU 架构、物联网和通信系统。 教育背景 博士学位(光子工程),马来亚大学(UM),马来西亚(2019 年)。 硕士学位(微电子工程),马来西亚国立大学(UKM),马来西亚(2013 年) 学士学位(电气工程-电子学),伊朗 Azad 大学(2010 年) 工作经历 博士后研究员,马来亚大学(UM)光子学研究中心实验室,马来西亚 (2019-2020)。 讲师,厦门大学马来西亚分校,马来西亚 (2020 年至今)。研究经历/资助 硅微环谐振器作为折射率传感器与 THz 生成应用 – 首席研究员 利用螺旋谐振器研究无电池鼠标的电磁功率传输效率 – 联合研究员
5G 滤波器。[1] 特别是,独立薄膜体声波谐振器 (FBAR) 已被广泛用作 5G 频段的首选滤波器技术。FBAR 滤波器由夹在电极之间的压电材料薄膜组成,其呈电容器形状,悬浮在腔体上方。最先进的 FBAR 滤波器的厚度需要减小以满足不断增加的电信通信频率的要求,因为谐振频率与厚度成反比。然而,缩小当前设备几何形状具有挑战性,这不仅是因为制造这种超薄悬浮异质结构的复杂性,还因为多晶陶瓷的压电性能 [2,3] 和击穿电压会降低。[4,5] 此外,实现具有足够高电导率和低质量的纳米厚度均匀电极变得越来越困难。在这里,我们研究了独立的结晶复合氧化物作为替代材料平台,它可以减轻上述一些缺点并提高谐振滤波器的性能。众所周知,单晶比多晶具有更大的电介质击穿电压 [6],而 BTO 和 PbZr x Ti 1 − x O 3 (PZT) 等材料比常用的 AlN 具有更高的压电系数,因此可以在薄膜形式下处理更高的电压和功率密度。此外,超薄独立形式的单晶复合氧化物具有机械强度 [7],可承受高达 8% 的大应变,[8–10] 具有足够的柔韧性以允许较大的曲率 [11],并且已经被证明是可行的纳米机械谐振器。 [12–14] 同时,电极也需要缩小尺寸,以支持 5G 和 6G 应用的高 GHz 频率。在这方面,石墨烯是一种理想的电极材料。石墨烯可将电传导至单原子层,[15] 具有超高迁移率,[16,17] 机械强度高,[18,19] 能够承受大应变 [20],并且已证明可支持高达 300 GHz 的工作频率。[21] 因此,石墨烯在各种纳米机电系统 (NEMS) 应用中的使用已得到广泛探索。[22–29]
电子设备与电路、控制与自动化、通信、信号处理、计算机技术、电力系统、电力电子、机器与驱动器。2. 计算机技术:计算机网络、计算机架构、SoC 和 VLSI 设计和测试、传感器网络、嵌入式系统、并行和分布式处理、大数据分析、VLSI 的 CAD、计算机视觉和图像分析、生物识别、模式识别、机器学习、数据分析、神经网络、人工智能和软计算、多媒体系统、图论、系统生物学、生物信息学、医学信息学、计算语言学、音乐和音频处理、生物医学信号/图像处理、辅助技术、计算神经科学、脑机或人机界面、医疗电子/医疗技术、网络安全、网络物理安全。 3. 半导体器件、材料、制造、特性、VLSI 设计、光子学、混合信号电路设计、射频电路设计、NEMS、神经形态、纳米电子学、非易失性存储器技术、SRAM、DRAM、量子材料、电子和计算、光伏、传感器、等离子体、紧凑建模、自旋电子学、MEMS、模拟电路设计、电路测试、容错、故障安全设计、微电子和功率器件、电路器件交互、电路器件优化、3D IC、3D 芯片、先进半导体封装、器件可靠性、柔性和可印刷电子、红外光电探测器、化学传感器、能量收集器和存储、光电子学、功率半导体器件和宽带隙半导体、量子材料、生物传感器、生物医学器件、纳米制造、新型光学和电子材料的生长和自组装、集成纳米级系统、计算电磁学、传感器:光纤和芯片、生物光子学和生物成像、固态成像、CMOS图像传感器、生物启发视觉系统、神经形态成像、模拟/数字电路设计、光电子学和光子学、用于量子计算的低温硅基量子比特和CMOS的建模和表征、RF-CMOS器件和电路、CMOS和GaNHEMT器件的可靠性、CMOS中的辐射效应、半导体硬件安全、微流体学、
摘要:对齐的纳米纤维(例如碳纳米管(CNT))的出色固有特性,以及它们易于形成成多功能的3D体系结构的能力,激励它们用于各种商业应用的使用,例如电池,用于环境监测的化学传感器以及能源监测和节能式载体。在控制对生长底物的纳米纤维粘附对于批量制造和设备性能是必不可少的,但迄今为止的实验方法和模型尚未解决CNT阵列 - 底物 - 底物粘附强度在热处理条件下。在这项工作中,可轻松的“一锅”热后生成处理(在温度下t p = 700 - 950°C)用于研究CNT-底物 - 底物提取强度,用于毫米高的对准CNT阵列。CNT阵列通过拉伸测试从平坦生长基板(Fe /Al 2 O 3 /SiO 2 /Si Wafers)中取出,表明该阵列逐渐失败,类似于脆性微生物束的响应。在三个方案中,引进强度与T P非单调地演变,首先由于在CNT-catalyst界面上对无序碳的石墨化而首先增加10次,直至t p = 800°C,然后由于Fe催化为catly catalyst扩散到950°C而降低到弱界面,从而降低到弱界面,并降低了sudtration substration substration substrate and 2 o cystration and 2 o 3 cystration and 2 o 3 cystratization。失败发生在750°C以下的CNT-催化剂界面处发生,并且CNT在较高的T P加工后拉出期间自身破裂,在基板上留下了残留的CNT。形态学和化学分析表明,在所有制度中,Fe催化剂在撤离后仍保留在底物上。这项工作提供了对负责纳米纤维 - 底物粘附的界面相互作用的新见解,并允许调谐增加或降低应用程序的阵列强度,例如高级传感器,能量设备和纳米机电系统(NEMS)。关键字:碳纳米管,粘附,热处理,机械性能,界面行为,扫描传输电子显微镜■简介