这项研究由伊拉克农业部植物保护局开展,旨在了解在小麦品种 IPA-99 中添加植物生长促进微生物 (PGPM)(巴西安氏螺旋菌、梭形赖氨酸芽孢杆菌、鹰嘴豆根瘤菌 CP-93、荧光假单胞菌、巨大芽孢杆菌和哈茨木霉)作为生物肥料与 25% 矿物肥料的效果。实验室研究包括分离和鉴定赖氨酸芽孢杆菌,该菌在体外与这些微生物之间没有拮抗作用。研究结果表明,T2处理在大多数性状中均表现优异,包括分蘖数(4.00 分蘖株 -1 )、穗长(10.50 cm)、每穗小穗数(19.50 小穗穗 -1 )、百粒重(3.50 g)和每穗粒数(35.43 粒穗 -1 )。该处理在籽粒氮含量(4.870%)、磷含量(1.943%)、钾含量(4.156%)和蛋白质含量(30.43%)等方面也表现出色。除生物产量特性(处理T5(62.30 g株 -1 )优于处理T1(23.10%))和收获指数(处理T2)外,T2优于所有处理。但是,它们与处理T2之间并无显著差异。关键词:小麦、梭形芽孢杆菌、生物肥料、PGPM、生长和产量性状 主要发现:梭形芽孢杆菌作为生物肥料处理,结合 25% 的推荐矿物肥料剂量,显著提高了小麦的生长和产量参数。此外,生物肥料还增加了小麦植株中 NPK 的利用率。
在2020年至2022年在伊斯玛利亚研究站进行了一次实地实验,以改善Khaya Senegalensis和Swietenia Mahagoni的生长,并结合使用矿物质肥料(NPK)和生物肥料(Azotobacter coctere crocter cocter cocter cocter),并散发出杂物,并添加杂物,并散发出细菌,并使用。沙质土壤条件。使用四种处理设计的分裂图(对照(50%矿物肥料(M.) + 50%生物肥料(Bio。),100%M和100%生物。)每个物种。Ve- getative growth, leaf area, tree biomass, stored carbon, basal area, tree volume, and in the soil both of microbial account and mineral content were determined.实验结果表明,研究最多的参数之间研究的物种之间没有显着差异,除了塞内加尔氏菌(Khaya senegalensis)与玛哈基尼(Swietenia Mahagoni)的根生物量和低于储存的碳的显着差异最高。显然,最高的显着生长Pa-Rameter是100%矿物肥料,其次是(50%M + 50%Bio。)与对照相比。100%M和(50%M。 + 50%生物)之间没有显着差异。)芽干生物量(分别为15.19和12.02 kg)和上述碳(分别为0.28和0.22 mt)。在种植和对照之前与种植的树种栽培后,微生物账户和矿物质含量得到了改善,尤其是在50%的矿物质肥料和50%的生物肥料治疗中。微生物账户和矿物质含量得到了改善,尤其是在50%的矿物质肥料和50%的生物肥料治疗中。总而言之,一种含有50%矿物质肥料和50%生物肥料的治疗方法,导致理想的塞内加伦(Khaya Senegalen-Sis)和Swietenia mahagoni在沙质土壤中的生长,以廉价且可持续。
摘要 将生产基础转变为更可持续的农业是我们这个时代的重大挑战之一。东欧目前的冲突对农产品市场产生了重大影响,导致农业用肥料的准入受限,成本大幅上涨。这种情况引起了国际社会对粮食短缺的担忧,依赖肥料进口的国家需要找到机制和新的技术途径来减少对国际市场的依赖。使用与微生物结合的碎石(土壤再矿化剂)是一种重要的替代方案,可以降低成本、减少对环境的影响并减少对农业投入的外部依赖。这项研究的目的是评估不同类型的土壤施肥投入(碎石 - 再矿化剂、有机物质和常规 - NPK)的结果、藜麦种植(藜麦)的生产参数以及作物的营养成分。实验在温室中进行,对数据进行了方差分析、Dunnett 检验、复杂对比和多变量分析。结果表明,使用再矿化剂处理过的作物灌浆和藜麦产量、土壤肥力和地上部分养分含量均显著增加。含有再矿化剂和有机堆肥混合物的处理方法优于未添加这些投入的方法,表明这些来源之间存在正向相互作用。这种方法可能有助于采用新技术,尤其是在当前可溶性肥料供应不足的情况下。使用当地地质来源(碎石)可以减少对进口肥料的依赖,从而有助于提高各国的农业粮食主权,并在地方和全球层面遵守农业生态学原则。© 2022,国际数学地球科学协会。
施肥NPK肥料将被用于选择树木,以在必要时确定树木的临界根区域内的最佳养分水平。肥料将使用“深根饲料”液体注射或肥料树固定在树的滴水线上插入土壤插入物。覆盖树环覆盖将不断监控以侵占杂草/草皮并去除。覆盖物将根据需要或每2年内替换或添加。树环大小将根据树的大小增加,以保护树的根部区域和树干。覆盖物将用于与整个校园保持一致性。松子覆盖物可在白松树上使用。可回收的木屑可用于沿栅栏线和外围树木(例如用于财产边界或筛查的)区域。灌溉和浇水三个支柱的300英亩校园的灌溉系统有限。在树木落在灌溉的草皮区域或景观床内的地区,将监测树木浇水,以确保树木接受适当量的水和/或不被水上浇水。在没有灌溉或成熟的三个支柱校园的区域中,将在较小的卡尺树上使用鳄鱼袋,并用手工浇水,洒水器或浸泡软管进行补充浇水,这将被认为是必要的 - 这将减少压力,并在干燥天气情况下降低压力,并促进健康和活力。根据需要处理有害生物问题的害虫管理树。较大的树木超过10英寸,高度高于20'的高度将通过躯干注入技术来处理。将喷洒较小的树木,或在适当的地方使用土壤浸湿。集成的害虫管理(IPM):
在气候变化下,了解农业生态系统中土壤有机碳(SOC)库存的动力学对维持土壤生产力和抵消温室气体排放的不可能是不可能的。模拟,以评估未来气候场景(RCP2.6,RCP4.5和RCP8.5)的影响,并在2100年对农作物产量和SOC股票的持续冬季小麦农作物系统在英格兰东南部的连续冬小麦作物系统中对作物产量和SOC股票的影响进行了影响。1921年至2000年之间的天气数据被认为是基线。SPACSYS首先通过Broadbalk连续冬小麦实验的数据进行了校准,并验证了一个多世纪。使用了六种处理方法:不肥料,化学氮,磷和钾与三种氮施用率(N1pk,N3pk和N5pk)的组合,肥料(FYM,接近N5pk的N施用率)与粪便和化学氮的施加(FYMN)(FYMN)的组合(相同的化学N3PK)。与观测值相比,SPACSYS能够模拟SOC和TN股票的谷物产量和动力学。我们的谓词表明,由于大气CO 2浓度的逐渐增加,与基线相比,在未来气候情况下,所有肥料施用治疗的所有肥料施用处理将增加5.8 - 13.5%。同时,除了RCP2.6下的NPK肥料实践外,SOC股票可以增加实践的习惯。通过“ CO 2过富效应”增加C输入可以通过RCP场景下的土壤呼吸来补偿C损失。我们得出的结论是,在未来的气候情况下,可以将肥料应用实践视为增强小麦产量和土壤隔离的可持续策略。
本研究旨在评估2022/2023种植雨季节,Zalingei地区的Zalingei地区的技术转移和参与式技术开发对农民的作物产量和收入的作用。应用的聚类随机抽样技术。示范农场建立在1.5 Feddan地区。被选中25名男女农民的农民野外学校(FFSS)。针对男性和女性农民的参与式技术开发(PTD)也在1.5 Feddan地区开发。改进的种子将被种植与本地检查。每种包括NPK肥料微剂量的治疗方法(0。0.3、0.6和0.9克/孔)随机实践。肥料的微剂量,加入17-17-17的百分比,并在种植方法中与每个孔的种子混合。在所有研究技术包装,播种日期,种子制备,种子敷料,稀疏,除草,收获,土壤保护,害虫和疾病控制,种子生产技术,收获和后收获技术的所有研究技术包中,所有从事FFSS培训实践和理论农业经验丰富的农民。部分作物预算的结果表明,所有农作物都在现实的净回报上得到了积极的净回报。最高的产量kg/ha是通过高粱wad-ahmed 3500,高粱丁那(Sorghum butana)获得的,高粱局部和g/nut gibaish,而芝麻(776 kg/ha)显示为高粱的局部和G/nut Gibaish。因此,高粱Butana(SDG 329048),高粱WAD-AHMED(SDG 295477),高粱本地(SDG 269048)和G/NUT Gibaish(SDG 108990)记录了最高的净回报。虽然芝麻本地(195 kg/feddan)获得的最低收益率。虽然最低的净回报是由g/nut local计算的,可持续发展目标21,381。边际分析的结果表明,高粱丁那获得了最高的MRR 1230。参与技术开发的结果(PTD)提高了局部收益率,这表明,高粱wad-ahmed和g/nut Gibaish(1100和950 kg/feddan)获得的最高收益率。与局部相比,改善的增长量的增长表明,高粱的谷物量超过11%,小米阿什纳36%,芝麻promio 13%,而花生的gibaish则超过了25%。该研究建议加强研究扩展农民,并加强农民的参与式技术发展。
摘要 本报告探讨了生物肥料作为印度化学肥料可持续替代品的潜力,重点关注其在促进气候适应型农业方面的作用。从历史上看,化学肥料推动了印度农业部门的增长,尤其是在绿色革命之后。然而,化学肥料的广泛使用导致了环境恶化、土壤肥力下降以及由于土壤和水中化学物质积聚而导致的健康风险。认识到这些问题后,印度政府出台了 PM-PRANAM Yojana 等政策,旨在促进生物肥料的使用,减少对化学品进口的依赖,并减轻补贴负担。生物肥料由有益微生物组成,通过改善土壤养分含量和作物产量而没有有害的副作用,提供了一种可持续的解决方案。本报告应用回归分析来预测未来的作物产量,结果表明,到 2064 年,生物肥料在有效性和采用率方面可能会超过化学肥料,这与印度的农业可持续发展目标相一致。最终,本研究提倡更多地采用生物肥料,以确保长期粮食生产,改善土壤健康,并支持印度向可持续农业实践的过渡。 简介 根据 OEC 的数据,印度是世界上最大的化肥进口国之一,其次是巴西、美国和中国,2021 年进口的化肥总额为 80 亿美元。印度每公顷平均施肥量约为 145 公斤,受西孟加拉邦等邦的影响,西孟加拉邦的消费量为 122 公斤/公顷,哈里亚纳邦为 167 公斤/公顷,旁遮普邦为 184 公斤/公顷,北方邦和北阿坎德邦为 127 公斤/公顷,安得拉邦为 138 公斤/公顷,泰米尔纳德邦为 112 公斤/公顷,其余各邦每公顷消费量低于总体平均水平 145 公斤/公顷(Arvind K. Shukla 等人,2022 年)。长期过量使用化肥和粪肥可能会导致重金属在土壤和植物中积聚,并导致重金属含量过高,因为这些重金属会在土壤中积累,然后在植物和动物体内生物累积。尿素的过量使用也是一个令人担忧的问题,因为据报道,这会导致印度与硝酸盐有关的地下水污染加剧。另一个令人担忧的是,磷肥通过地表水流运输,可能会增加饮用水和河流中的磷酸盐含量(Arvind K. Shukla 等人,2022 年)。除了这些有害影响之外,化肥也没有发挥应有的作用。化肥在绿色革命期间和之后给印度农业生态系统带来的促进作用至今尚未持续。相对于所用化肥,粮食产量的增长有所下降。 20 世纪 60 年代施用 1 公斤氮、磷、钾 (NPK) 可产 12 公斤作物,现在减产至仅 5 公斤。同样,氮利用效率(NUE)从20世纪60年代中期的48%下降到2018年的35%。