近年来,太空行业的两个主要主题是向月球任务的复兴,促进了人类在太阳系中的扩展以及立方体发射的迅速增长。月球任务将在可持续太空探索中发挥重要作用。路线图概述了当前和下一代探险家的下一步,并重申了14个太空机构返回月球的兴趣。在过去的十年中,一种更大胆的空间创新方法和低成本小卫星的扩散邀请了商业化,随后加速了微型技术的发展,并大大降低了与立方体相关的成本。在这种情况下,越来越多的立方体被视为低地球轨道以外的开创性任务的平台。本文描述了向月球进行的3U纳米卫星任务,该任务设计为UKSEDS卫星设计竞赛的一部分,能够捕获和分析月球环境的细节。为了实现主要的任务目标,已经包括一个相机和红外光谱仪,以将有关历史悠久的月球标志的信息转移到地球上。该设计的开发是与Open Cosmos的OpenKit集成的,并由SSPI领域的专家进行了审查。本文包括对当前微型工具状态的详细评估以及通过Lunar Cubesat Mission可以实现的科学回报质量。这是对月球群体的整体可行性研究,讨论与立方体技术相关的当前局限性和挑战的讨论以及未来任务的框架。
摘要:在一些地理条件恶劣的地区(如沙漠、海洋和森林),直接连接到地面网络很困难,因此空间通信是唯一的选择。在这些偏远地区,物联网 (IoST) 应用也可以成功使用。本文提出了用于 IoST 应用的有效载荷,展示了如何有效地使用自动识别系统 (AIS) 和火灾探测系统。基于高效低成本通信的太空任务可以使用一组纳米卫星来更好地满足这一需求。这两个使用一组纳米卫星的应用可以为多个国家提供相关的大学级数据,作为教育计划项目中空间技术转让的有效政策。为了提高教育参与度和对空间技术的兴趣,本文分享了基于对纳米卫星的深入设计以及多项分析(数据预算、链路预算、功率预算和寿命估计)的项目可行性研究的经验教训。最后,本文通过实验重点介绍了用于火灾探测的经济高效的传感器节点的开发和应用,以及使用 GPS 在 IoST 框架中实现 AIS 功能。
随着近年来星载数据量的不断增长,自由空间光学 (FSO) 或激光通信系统正备受关注,因为它们可以实现超过 1 Gbps 的超高数据速率。使用红外光学终端和纳米卫星的超高速卫星间链路系统 (VISION) 是一项技术演示任务,旨在建立和验证使用两颗编队飞行的 6U 纳米卫星的激光交联系统。最终目标是在数千公里的距离上实现 Gbps 级的数据速率。为了建立空间对空间激光通信,每个卫星的有效载荷光轴应在交联过程中精确对齐。有效载荷是激光通信终端 (LCT),包括可部署空间望远镜 (DST),它可以提高光学链路性能。6U 纳米卫星总线采用商用现货 (COTS) 组件设计,以实现敏捷系统开发。为了实现精确的编队飞行,该平台配备了带有 GNSS 接收器和 RF 交联器的相对导航系统、星跟踪器、3 轴反作用轮 (RW) 和推进系统。提出的激光交联系统概念将有助于未来构建具有高速和安全链路的 LEO 通信星座。
NASA的Cubesat发射计划(CSLI)为小卫星有效载荷提供了发射机会。 这些立方体作为先前计划的任务或风险投资班发射器的主要有效载荷作为辅助有效载荷飞行。 立方体是一类称为纳米卫星的研究航天器。 要参加CSLI计划,Cubesat调查应与NASA的战略计划和教育战略协调框架一致。 该研究必须解决科学,探索,技术发展,教育或运营的各个方面。NASA的Cubesat发射计划(CSLI)为小卫星有效载荷提供了发射机会。这些立方体作为先前计划的任务或风险投资班发射器的主要有效载荷作为辅助有效载荷飞行。立方体是一类称为纳米卫星的研究航天器。要参加CSLI计划,Cubesat调查应与NASA的战略计划和教育战略协调框架一致。该研究必须解决科学,探索,技术发展,教育或运营的各个方面。
7ovul:抓up [o Pupiliz vm 7ovul:hill [lssp [ljouvsvn` kltvuz [yh [yh [pvu tpzpvuz kl] lsvwlk i`5(:( tlz ljouvsvnplz:whjl? Soution:HAL 7OL 7OVUL:Hin Huk Jvun [puv] h