纳米技术的研究范围包括基础物理学、生物学、化学和其他纳米级物质技术。最近,纳米技术已经扩展到可再生能源领域。可再生能源被定义为通过自然资源产生的能量,其更新速度比消耗速度快,例如太阳能、风能和其他可再生能源。当今世界人口的增长和技术的进步导致对能源使用的需求增加。纳米技术在可再生能源中的应用有望解决能源需求短缺问题。本文旨在介绍纳米技术在可再生能源系统中的一些关键应用。主要关注的是纳米粒子在氢气生产、太阳能电池制造、用于储能的纳米复合材料和用于生物技术的纳米技术方面的应用。此外,本文还讨论了纳米技术在可再生能源领域应用的机遇和问题。因此,纳米技术在能源领域的应用有望提供高效和可持续的能源解决方案,从而创造低碳经济,减少温室气体排放。关键词:纳米技术应用;储氢系统;纳米氧化铈
空气污染仍然是现代时代最紧迫的环境挑战之一,对全球公共卫生和生态系统产生了深远的影响[1,2]。快速工业化,城市扩张和不断升级的能源需求导致空气传播污染物的增加,包括颗粒物(PM),氮氧化物(NOX),硫氧化物(SOX),挥发性有机化合物(VOC)(VOC)和温室气体[3]。这些污染物降低空气质量,并导致全球现象,例如气候变化和酸雨[3]。世界卫生组织(WHO)的数据强调了这个问题的严重性,该数据表明空气污染在全球范围内导致数百万个早期死亡,这使其成为呼吸和心血管疾病,癌症和其他慢性病的主要危险因素[2,4]。
COVID-19 大流行正在突然改变常态,造成巨大损失,导致人员死亡。科学进步需要人工智能 (AI)、物联网、大数据和机器学习语言等新兴技术的支持和交付,这些技术可以超越医疗保健系统的传统策略。在这篇评论中,我们讨论了几种搜索引擎工具和基于人工智能的应用程序,即感染期间的早期检测和诊断、追踪个人的接触、监测治疗、药物和疫苗的开发,这些都可以通过使用这些技术来实现。药物的发现需要这些技术来加速深度学习技术,以创建模型并预测治疗 COVID-19 的诊断过程。人工智能可用于了解药物的现有模式,并通过人工智能算法提取新的见解,这些见解将在开发疫苗时发现并具有治疗潜力。关键词:搜索引擎;接触追踪;药物发现;药物再利用;人工智能;机器学习;COVID-19
人工智能 (AI) 的广泛使用正在悄悄减少人与人之间的互动交流,并迅速将世界变成汽车。这些进步倾向于快速大规模生产和准确而系统的供应链和交付,以满足每一位最终客户的需求,因为他们的满意度为特定行业应该运行和引领全球市场提供了许多理由。机器人和数据处理机制是一些最著名的领先高端技术,它们使用人工智能 (AI) 和机器学习 (ML) 以最低的成本、劳动力和时间消耗来制造、加工和交付定性和定量的产品。如今,即使是初创企业或小型企业(例如咖啡馆、快餐中心、餐馆等)也在利用这些技术脱颖而出并迅速发展业务。
Quote:Sidiki Zongo,Fabrice Bado,TongonmanegdeLéonardOuedraogo,Moussa Sougoti,SiéZacharieKam等。(2024)MNTPYP-PMMA复合锡膜的线性和非线性光谱表征,J纳米纳斯基纳米技术应用程序8:104
1. Sato H, Watanabe T, Aoyagi K, Yoshida T. 自组装脂质纳米粒子用于药物输送:结构和功能。J Nanosci Nanotechnol。2011;11:4030-4040。2. Sagalowicz L, Danino DM。自组装脂质纳米粒子:立方体和六聚体。J Colloid Interface Sci。2011;354:53-60。3. Zhao H, Xu H, Yang X, Wang S。用于药物输送的立方体纳米载体的制备和表征:综述。Nanotechnol Rev。2019;8:577-597。4. Lee JY, Choi MK。用于药物应用的立方体和六聚体系统的制备和表征。Pharm Res。2011;28:1099-1110。 5. Hawker CJ, DeSimone JM. 用于药物递送的纳米结构脂质载体:药物封装和释放机制。Adv Drug Deliv Rev. 2010;62:455-470。6. Tian H, Li TT. 立方体在药物递送中的应用:综合综述。J Control Release。2015;220:535-545。7. Khan Y, Choi S, Lee JC, Lee SH. 基于立方体的基因治疗递送系统。Mol Ther Methods Clin Dev. 2020;17:96-110。8. Ma X, Zhang Y, Liu CL. 基于立方体的载体用于癌症基因治疗中的核酸递送。J Nanobiotechnology。2016;14:11。
▪ Seok-Kyun Son, Makars Šiškins, Ciaran Mullan, Jun Yin, Vasyl G Kravets, Aleksey Kozikov, Servet Ozdemir, Manal Alhazmi, Matthew Holwill, Kenji Watanabe, Takashi Taniguchi, Davit Ghazaryan, Kostya S Novoselov, Vladimir I Fal'ko & Artem Mishchenko,石墨烯热电子灯泡:空气中HBN封装的石墨烯的白炽灯。2D材料2017,5(1)。 ▪YU。 N. Khanin, E. E. Vdovin, M. V. Grigor'ev, O. Makarovsky, Manal Alhazmi, S. V. Morozov, A. Mishchenko & K. S. Novoselov,Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene. JETP Letters 2019,109(7):482-489。 ▪M Alhazmi,Om Ramahi,M Irannejad,A Brzezinski,M Yavuz等人,“ NSTOA-13-RA-108金属绝绝diodes中金属电极在金属 - 金属金属二极管中变化的影响的比较与多介质层与多介质层与多介质层的效果” ,卷。 2,不。 2,pp。 1014,2014。 ▪f Aydinoglu,M Alhazmi,B Cui,O Ramahi,M Irannejad等人,“使用多个绝缘体层的高性能金属 - 绝缘子金属二极管”,Austin J Nanomed Nanotechnol。 1,卷。 3,不。 2014年。 ▪M。Alhazmi,M。Yavuz和B. Cui,使用多层聚苯乙烯电子束抵抗,第57届电子,离子和光子光束技术和纳米制作(EIPBN)的对比曲线工程,2013年5月。 ▪C。Con,M。Alhazmi,M。Yavuz和B. Cui,冻结冻干,以减少电子束抵抗倒塌,2013年9月在伦敦举行的MNE会议,2013年9月。。2D材料2017,5(1)。▪YU。N. Khanin, E. E. Vdovin, M. V. Grigor'ev, O. Makarovsky, Manal Alhazmi, S. V. Morozov, A. Mishchenko & K. S. Novoselov,Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene.JETP Letters 2019,109(7):482-489。▪M Alhazmi,Om Ramahi,M Irannejad,A Brzezinski,M Yavuz等人,“ NSTOA-13-RA-108金属绝绝diodes中金属电极在金属 - 金属金属二极管中变化的影响的比较与多介质层与多介质层与多介质层的效果”,卷。2,不。2,pp。1014,2014。▪f Aydinoglu,M Alhazmi,B Cui,O Ramahi,M Irannejad等人,“使用多个绝缘体层的高性能金属 - 绝缘子金属二极管”,Austin J Nanomed Nanotechnol。1,卷。3,不。2014年。▪M。Alhazmi,M。Yavuz和B. Cui,使用多层聚苯乙烯电子束抵抗,第57届电子,离子和光子光束技术和纳米制作(EIPBN)的对比曲线工程,2013年5月。▪C。Con,M。Alhazmi,M。Yavuz和B. Cui,冻结冻干,以减少电子束抵抗倒塌,2013年9月在伦敦举行的MNE会议,2013年9月。▪ F. Aydinoglu, M. Alhazmi, S. Alqarni, B. Cui, O. M. Ramahi and M. Yavuz, “Design and Fabrication of Pt-Al2o3-Al Metal- Insulator-Metal Diode,” accepted for publication in the 24th Canadian Congress of Applied Mechanics (CANCAM 2013), Saskatoon, Saskatchewan, Canada, June 2-6,2013。
1 A. Volta,Philos Trans 2 402(1800) 2 B. Scrosati,Journal of Solid State Electrochemistry 15,1623(2011) 3 EM Erickson、C. Ghanty 和 D. Aurbach,J. Phys. Chem. Lett. 5,3313(2014) 4 D. Aurbach、E. Zinigrad、Y. Cohen 和 H. Teller,Solid State Ionics 148,405(2002) 5 M. Dahbi、F. Ghamouss、F. Tran-Van、D. Lemordant 和 M. Anouti,J. Power Sources 196,9743(2011) 6 A. Manthiram、Y. Fu、S. Chung、C. Zu 和 Y. & Su,Chem. Rev. 114 , 11751 (2014) 7 P. Tan, HR Jiang, XB Zhu, L. An, CY Jung, MC Wu, L. Shi, W. Shyy, 和 TS Zhao Applied Energy 204 780 (2017) 8 S. Whittingham, Science 192, 1126 (1976)。 9 MN Obrovac,和 VL Chevrier,化学。 Rev. 114 , 11444 (2014) 10 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, JM Tarascon, Nature 407, 496 (2000) 11 JW Choi, D. Aurbach, Nat。马特牧师。 1, 16013 (2016) 12 MN Obrovac 和 VL Chevrier,化学。 Rev. 114 , 11444 (2014) 13 A. Casimir、H. Zhang、O. Ogoke、JL Amine、J. Lu 和 G. Wu, Nano Energy 27 , 359 (2016) 14 B. Liang、Y. Liu 和 Y. Xu, J. Power Sources 267 , 469 (2014) 15 M. Winter、JO Besenhard、ME Spahr 和 P. Novák, Adv. Mater. 10 , 725 (1998) 16 CK Chan、H. Peng、G. Liu、K. McIlwrath、XF Zhang、RA Huggins 和 Y. Cui, Nat. Nanotechnol. 3 , 31 (2008) 17 XH Liu, L.zhong, S. Huang, SX Mao, T. Zhu 和 JY Huang, ACS Nano 6, 1522 (2012) 18 JK Lee, KB Smith, CM Hayner 和 HH Kung, Chem. Commun ., 46 , 2025 (2010) 19 Y. Ma, R. Younesi, RJ Pan, CJ Liu, JF Zhu, BQ Wei, K. Edström, Adv.功能。马特。 26, 6797 (2016) 20 E. Greco 等人,J. Mater。化学。 A 5, 19306 (2017) 21 S. Palumbo 等人,ACS Appl。能源材料。 (2019)
1。Stolterfoht M,Grischek M,Caprioglio P等。如何量化整洁的钙钛矿膜的效率潜力:隐含效率超过28%的钙钛矿半核对象。ADV MATER。2020; 32(17):2000080。 doi:10.1002/adma.202000080 2。Hages CJ,Redinger A,Levcenko S等。在非理想的半导体中识别实际的少数族载体寿命:Kesterite材料的案例研究。adv Energy Mater。2017; 7(18):1700167。 doi:10.1002/aenm。 2017001673。DeMello JC,Wittmann HF,朋友RH。 改进了外部光致发光量子效率的实验确定。 ADV MATER。 1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2017; 7(18):1700167。 doi:10.1002/aenm。2017001673。DeMello JC,Wittmann HF,朋友RH。改进了外部光致发光量子效率的实验确定。ADV MATER。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。 Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。1997; 9(3):230-232。 doi:10.1002/adma.19970090308 4。Katahara JK,Hillhouse HW。 QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。 J Appl Phys。 2014; 116(17):173504。 doi:10.1063/1.4898346 5。 Braly IL,Dequilettes DW,LM等人的Pazos-Out。 杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。 nat光子学。 2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。Katahara JK,Hillhouse HW。QUASI-FERMI水平分裂和半导体光致发光的子带隙吸收性。J Appl Phys。2014; 116(17):173504。 doi:10.1063/1.4898346 5。Braly IL,Dequilettes DW,LM等人的Pazos-Out。杂种钙钛矿膜接近辐射极限,其光量超过90% - 孔量子效率。nat光子学。2018; 12(6):355-361。 doi:10。 1038/s41566-018-0154-Z 6。 Frohna K,Anaya M,Macpherson S等。 纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。 纳米技术。 2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div> wurfelP。辐射的化学潜力。 J Phys C:固态物理。 rau U. Phys Rev b。2018; 12(6):355-361。 doi:10。1038/s41566-018-0154-Z 6。Frohna K,Anaya M,Macpherson S等。纳米级化学杂化基因占主导地位的钙钛矿太阳能电池的光电子反应。纳米技术。2022; 17(2):190-196。 doi:10.1038/ s41565-021-01019-7 7。 div>wurfelP。辐射的化学潜力。J Phys C:固态物理。rau U.Phys Rev b。1982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。 光伏量子效率与太阳能电池的电发光发射之间的相互关系。 2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-21982; 15(18):3967-3985。 doi:10.1088/0022-3719/15/18/012 8。光伏量子效率与太阳能电池的电发光发射之间的相互关系。2007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。 Caprioglio P,Wolff CM,Sandberg OJ等。 关于钙钛矿太阳能电池中理想因子的起源。 adv Energy Mater。 2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。 Sarritzu V,Sestu N,Marongiu D等。 混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。 SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22007; 76(8):085303。 doi:10.1103/physrevb.76.085303 9。Caprioglio P,Wolff CM,Sandberg OJ等。关于钙钛矿太阳能电池中理想因子的起源。adv Energy Mater。2020; 10(27):2000502。doi:10.1002/aenm.202000202 10。Sarritzu V,Sestu N,Marongiu D等。混合钙钛矿中冲击式读取厅和界面重组电流的光学测定。SCI代表。 2017; 7(1):44629。 doi:10.1038/srep44629 11。 Richter JM,Abdi-Jalebi M,Sadhanala A等。 通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。 nat Commun。 2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2SCI代表。2017; 7(1):44629。 doi:10.1038/srep44629 11。Richter JM,Abdi-Jalebi M,Sadhanala A等。通过光子回收和光外耦合增强卤化物钙壶岩中的光含量产量。nat Commun。2016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div> Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。 J Phys Chem Lett。 2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22016; 7(1):13941。 doi:10.1038/ ncomms13941 12。 div>Staub F,Kirchartz T,Bittkau K,Rau U.通过修饰光偶联的修饰,在铅卤化物钙钛矿膜中操纵净辐射重组率。J Phys Chem Lett。2017; 8(20):5084-5090。 doi:10。 1021/acs.jpclett.7b02224 13。 Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22017; 8(20):5084-5090。 doi:10。1021/acs.jpclett.7b02224 13。Davies CL,Filip MR,Patel JB等。 双分子重组三碘化物钙钛矿是一个反吸收过程。 nat Commun。 2018; 9(1):293。 doi:10.1038/s41467-017- 02670-2Davies CL,Filip MR,Patel JB等。双分子重组三碘化物钙钛矿是一个反吸收过程。nat Commun。2018; 9(1):293。 doi:10.1038/s41467-017- 02670-22018; 9(1):293。 doi:10.1038/s41467-017- 02670-2