PSLV 是印度第三代运载火箭,也是第一款配备液体级的运载火箭。PSLV 是印度空间研究组织的主力运载火箭,能够将卫星发射到不同类型的轨道,如太阳同步极地轨道 (SSPO)、低地球轨道 (LEO) 和地球同步转移轨道 (GTO),甚至深空任务。PSLV 已完成 48 次任务,将卫星送入不同轨道,其中包括印度的遥感和通信卫星、首次月球任务 Chandrayaan-1、火星轨道器任务 (MOM) 航天器、首次太阳任务 Aditya-L1、XPoSat、印度区域导航卫星星座 (NavIC),以及许多外国卫星。另一个值得注意的特点是 2017 年 2 月 15 日发射的 PSLV-C37,成功将 104 颗卫星部署在太阳同步轨道上。 PSLV 展示了 PS2 发动机重启、在同一任务中将卫星送入多个轨道等关键技术,以及使用废弃 PS4 级(称为 POEM)进行微重力实验的印度独特廉价太空平台。地球同步卫星运载火箭 (GSLV)
UR 位于卡纳塔克邦班加罗尔。拉奥卫星中心 (URSC) 是印度空间研究组织的旗舰卫星技术中心。 URSC航天器技术包括航天器的构思、设计、研制、制造、测试、释放和集中绑定等。为履行其发展航天器的任务,该中心致力于开发与其活动有关的最先进的技术,并建立用于设计、开发、制造和测试航天器的基础设施。在过去四十年的时间里,URSC。成功建立了亚太地区最大的国内通信卫星系统之一印度国家卫星(ITS)系统和最大的地面观测卫星运行星座之一印度遥感(IRS)系统。一颗基于区域定位系统的独立印度卫星,由七颗导航卫星(Navik)组成,包括印度星座在内的战略性国家应用将很快投入运营。火星探测、月船一号、天文卫星等一些科学和探索任务引起了国际关注。 URSC美国宇航局未来承担的任务极具挑战性,并为开发尖端技术和建立先进的太空探索及其他基础设施提供了机会。位于卡纳塔克邦班加罗尔的 UR Rao 卫星中心 (URSC) 是印度空间研究组织的卫星技术领导中心。 URSC 在航天器概念化、设计、开发、制造、测试、发射和在轨管理方面处于航天器技术的前沿。作为航天器开发任务的延续,该中心致力于开发与其活动相关的尖端技术以及为航天器的设计、开发、制造和测试而建立的基础设施。经过四十年的努力,URSC成功建立了印度国家卫星(INSAT)系统,这是亚太地区最大的国内通信卫星系统之一,以及印度遥感(IRS)系统,这是运行中最大的地球观测卫星星座之一。印度卫星导航系统 (NAVIC) 是一个独立的印度卫星区域定位系统,拥有七颗卫星,可用于重要的国家应用,即将投入运营。月船一号、火星轨道器任务、月船三号、阿迪亚-L1 和 Astrosat 等空间科学任务获得了全世界的广泛赞誉,使印度在全球占据了一席之地,同时激励了下一代。 URSC 未来承担的任务极具挑战性,并为开发创新技术、建立太空探索及其他领域所需的先进基础设施提供了机会。
1. 引言 全球导航卫星系统 (GNSS) 和相关技术可为 2030 年可持续发展议程作出广泛贡献。GNSS 和地球观测数据目前被广泛应用于各个领域,包括测绘和测量、环境监测、精准农业和自然资源管理、灾害预警和应急响应、航空、海上和陆地运输,以及气候变化和电离层研究等研究领域。GNSS 应用提供了一种在保护环境的同时实现可持续经济增长的经济有效方式。当前的 GNSS 包括全球定位系统 (GPS)、全球导航卫星系统 (GLONASS)、北斗卫星导航系统 (BDS) 和欧洲卫星导航系统 (Galileo)。此外还有两个区域系统,即印度星座导航系统 (NavIC) 系统和准天顶卫星系统 (QZSS),以及旨在提高一个或多个 GNSS 质量(例如准确性、稳健性和信号可用性)的各种增强系统。除了 GNSS,地球观测卫星或通信卫星等其他空间技术在创造社会经济效益方面也发挥着关键作用。地球观测卫星能够持续详细地监测地球表面,为环境保护、资源管理和灾害响应提供宝贵的数据。它们有助于追踪森林砍伐、城市扩张和农业用地变化,并为管理水资源和缓解气候变化提供重要见解
人工智能算法在 GNSS 中执行的可能性 Darshna Jagiwala(1)、Shweta N. Shah(2) (1) 女科学家,DST (2) 助理教授,SVNIT,印度 摘要 大量研究验证了在全球导航卫星系统 (GNSS) 领域使用人工智能 (AI) 算法的机会。实现智能有两种方式:一种是通过机器学习 (ML),另一种是通过深度学习 (DL)。最常见的是,支持向量机 (SVM) 和卷积神经网络 (CNN) 是人工智能的重要算法,在文献中用于提高 GNSS 系统的定位精度。本文通过考虑 GNSS 接收器在射频 (RF) 前端级别、预相关级别、后相关级别和导航级别的不同阶段来进行文献综述,这将更好地理解 AI 在该领域的实施。主要研究工作是在后相关阶段进行的,其中使用了不同的数据格式,如相关输出、国家海洋电子协会 (NMEA) 数据和接收器独立交换格式 (RINEX) 数据。除此之外,本文还讨论了与 AI 算法应用相关的威胁和风险因素。1.简介 GNSS 使用精确的定时信息、定位和同步技术提供全球和实时服务。目前,美国的全球定位系统(GPS)、俄罗斯的全球导航卫星系统(GLONASS)、欧洲的伽利略(GALILEO)和中国的北斗卫星导航系统(BDS)是全面运行的GNSS系统。此外,印度的印度星座导航(NavIC)和日本的准天顶卫星系统(QZSS)都是独立自主的区域导航系统。近年来,GNSS应用越来越精确,其精确度为广泛的应用打开了大门。[1]。卫星导航系统是根据发现的物理定律设计的[2]。• GNSS系统背后的基本思想是卫星在太空中传输信号。在这里,卫星在轨道上的位置遵循开普勒行星运动定律。• 这些信号由地球表面或附近的接收器接收。扩频技术用于获取从地球轨道发射的非常微弱的卫星信号。
太空飞行系列文章的一部分 历史 太空飞行史 太空竞赛 太空飞行时间线 太空探测器 月球任务 应用 地球观测卫星 间谍卫星 通讯卫星 军用卫星 卫星导航 太空望远镜 太空探索 太空旅游 太空殖民 航天器 机器人航天器 卫星 太空探测器 货运航天器 载人航天 太空舱 阿波罗登月舱 航天飞机 空间站 太空飞机 航天发射 太空港 发射台 一次性和可重复使用的运载火箭 逃逸速度 非火箭航天发射 航天类型 亚轨道 轨道 行星际 星际 星系际 空间组织列表 航天机构 太空部队 公司 太空飞行门户网站 卫星导航或 satnav 系统是一种使用卫星提供自主地理定位的系统。覆盖全球的卫星导航系统称为全球导航卫星系统 (GNSS)。截至 2023 年[更新],有四个全球系统投入运营:美国的全球定位系统 (GPS)、俄罗斯的全球导航卫星系统 (GLONASS)、中国的北斗卫星导航系统[1] 和欧盟的伽利略。[2] 正在使用的区域导航卫星系统是日本的准天顶卫星系统 (QZSS),这是一种基于 GPS 卫星的增强系统,可提高 GPS 的准确性,卫星导航独立于 GPS 计划于 2023 年实现[3],以及印度的区域导航卫星
项目一览 全球导航卫星系统 (GNSS) 技术如今已在日常生活中无处不在:它们被集成到电子设备中,并被公众、测量员和地球科学家定期使用。特别是在发展中国家,GNSS 应用提供了具有成本效益的解决方案,使其能够促进经济和社会发展,同时又不忽视保护环境的需要,从而促进可持续发展。 当前的 GNSS 包括全球定位系统 (GPS)、全球导航卫星系统 (GLONASS)、北斗导航卫星系统 (BDS) 和欧洲卫星导航系统 (Galileo)。还有两个区域系统,即印度星座导航系统 (NavIC) 和准天顶卫星系统 (QZSS),以及旨在提高一个或多个 GNSS 质量(例如准确性、稳健性和信号可用性)的各种增强系统。 除了 GNSS,其他空间技术(如地球观测 (EO) 卫星或通信卫星)在创造社会经济效益方面发挥着关键作用。地球观测卫星能够持续、详细地监测地球表面,为环境保护、资源管理和灾害应对提供宝贵数据。这些卫星有助于跟踪森林砍伐、城市扩张和农业用地变化,并为管理水资源和减轻气候变化影响提供重要见解。另一方面,通信卫星促进全球连通性,通过向偏远和服务不足的地区提供互联网接入来弥合数字鸿沟,从而支持教育、远程医疗和经济发展。这些技术与全球导航卫星系统 (GNSS) 一起,构成了一套全面的工具包,以应对与可持续发展相关的各种挑战,确保以协调和有效的方式实现 2030 年可持续发展议程。为了解决广泛的全球导航卫星系统和相关技术应用以获得社会经济效益,并着重于启动试点项目和加强全球导航卫星系统相关机构的网络,将在线举办一次关于全球导航卫星系统和相关空间技术支持城市可持续发展挑战的研讨会。研讨会的主要目标是加强各国之间的信息交流,提高应用全球导航卫星系统和其他空间技术解决方案的能力;分享有关国家、地区和全球项目和举措的信息,使各地区受益;并加强这些项目和举措之间的相互影响。讲习班的具体目标是介绍基于 GNSS 的技术和其他空间技术,以支持城市可持续发展挑战;促进更多交流具体应用的实际经验;重点关注国家和/或区域层面的适当 GNSS 应用项目;并确定建议和调查结果,以作为对外层空间事务处和全球导航卫星系统国际委员会 (ICG) 的贡献,特别是在建立伙伴关系以加强和实现卫星导航科学和相关技术的能力建设方面。本次讲习班利用了题为“对“太空 2030”议程的贡献:欧盟空间支持 80 亿人口的世界”的报告中确定的挑战