抽象恶意软件构成了对网络基础架构的主要威胁,该威胁容易受到几种破坏性恶意软件攻击的影响,例如病毒和勒索软件。传统的Antimalware软件可提供有限的效率,以防止恶意软件删除,因为不断发展的恶意软件能力(例如多态性)。Antimalware仅删除了其签名的恶意软件,并且对零日间攻击无效和无助,几项研究工作利用了监督和无监督的学习算法来检测和分类恶意软件,但假阳性占上风。这项研究利用机器学习来通过采用机器学习技术(包括特征选择技术以及网格搜索超参数优化)来检测和对恶意软件进行分类。主成分分析与Chi Square结合使用,以治愈维数的诅咒。支持向量机,K最近的邻居和决策树用两个数据集分别训练模型。使用混乱矩阵,精度,召回和F1评分评估了研究模型。使用CICMALMEM数据集分别使用K最近的邻居,决策树和支持向量机获得了99%,98.64%和100%的精度,该数据集分别具有相等数量的恶意软件和良性文件,K最近的邻居无法实现误报。未来的作品包括采用深度学习和集成学习作为分类器以及实施其他超参数优化技术。关键字:恶意软件检测,功能选择,超参数调整,网格搜索,机器学习。Accuracy of 97.7%,70% and 96% was achieved with K Nearest Neighbor, Decision Tree and Support Vector Machine respectively with Dataset_Malware.csv dataset, K Nearest Neighbor achieved False Positives of 38.The Model was trained separately with default hyperparameters of the chosen algorithms as well as the optimal hyperparameters obtained from Grid Search and it was discovered that optimizing超参数和与主组件分析获得的功能和Chi Square获得的功能使用具有相等数量的良性和恶意文件(CICMALMEM数据集)的数据集训练模型,从而通过支持向量机获得了最佳性能。简介的使用互联网的使用兴起,这是一个全球互连计算机网络的网络,带来了新的风险和漏洞。网络安全面临的主要问题之一是恶意攻击(Abiola&Marhusin,2018年)。恶意软件(也称为恶意软件)是侵入性软件,其设计具有伤害的特定目标,获得
2023年1月30日 — b. 如果计算结果为某个数字的分数,且该分数大于或等于 0.5,则该分数将四舍五入为最接近的整数。