摘要:至关重要的是要问,代理如何仅使用通过习惯性感觉运动经验获得的部分世界模型来生成行动计划,从而实现目标。尽管许多现有的机器人研究都使用了前向模型框架,但存在高自由度的泛化问题。当前的研究表明,采用生成模型的预测编码 (PC) 和主动推理 (AIF) 框架可以通过学习低维潜在状态空间中的先验分布来开发更好的泛化,该先验分布表示从习惯性感觉运动轨迹中提取的概率结构。在我们提出的模型中,学习是通过推断最佳潜在变量以及突触权重来最大化证据下限来进行的,而目标导向规划是通过推断潜在变量来最大化估计下限来完成的。我们提出的模型在模拟中使用简单和复杂的机器人任务进行了评估,通过为正则化系数设置中间值,证明了在有限的训练数据下学习中具有足够的泛化能力。此外,比较模拟结果表明,由于先验学习将运动计划的搜索限制在习惯轨迹范围内,因此所提出的模型在目标导向规划中优于传统的前向模型。
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
在这项工作中,我们提出了一种用于人形 iCub 机器人头部姿势估计和场景表示的神经形态架构。脉冲神经网络在英特尔的神经形态研究芯片 Loihi 中完全实现,并精确整合发出的运动命令,以在神经路径整合过程中估计 iCub 的头部姿势。iCub 的神经形态视觉系统用于校正姿势估计中的漂移。机器人前方物体的位置使用片上突触可塑性来记忆。我们使用机器人头部的 2 个自由度 (DoF) 进行实时机器人实验,并展示精确的路径整合、视觉重置和片上物体位置学习。我们讨论了将机器人系统和神经形态硬件与当前技术集成的要求。
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
如何开发精简而准确的深度神经网络对于实际应用至关重要,尤其是对于嵌入式系统中的应用。尽管之前沿着该研究方向的工作已经显示出一些有希望的结果,但是大多数现有方法要么无法显著压缩训练有素的深度网络,要么需要对修剪后的深度网络进行大量再训练才能重新提高其预测性能。在本文中,我们提出了一种新的深度神经网络分层修剪方法。在我们提出的方法中,每个单独层的参数都基于相应参数的分层误差函数的二阶导数独立地进行修剪。我们证明,修剪后最终的预测性能下降受每层造成的重构误差的线性组合限制。通过适当控制分层误差,只需对修剪后的网络进行轻度再训练即可恢复其原始的预测性能。我们在基准数据集上进行了大量实验,以证明我们的修剪方法与几种最先进的基线方法相比的有效性。我们的工作代码发布在:https://github.com/csyhhu/L-OBS 。
摘要 — 现代神经调节系统通常提供大量的记录和刺激通道,这降低了每个通道的可用功率和面积预算。为了在面积限制越来越严格的情况下保持必要的输入参考噪声性能,斩波神经前端通常是首选方式,因为斩波稳定可以同时改善(1/f)噪声和面积消耗。现有技术中,通过基于输入电压缓冲器的阻抗增强器解决了输入阻抗大幅降低的问题。这些缓冲器对大型输入电容器进行预充电,减少从电极吸取的电荷并有效提高输入阻抗。这些缓冲器上的偏移直接转化为电荷转移到电极,这会加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,它通过定期重新配置来消除偏移,从而最大限度地减少意外的电荷转移。本文详细介绍了背景和电路设计,并介绍了在 180 nm HV CMOS 工艺中实现的原型的测量结果。测量结果证实,发生了与信号无关的缓冲器偏移引起的电荷转移,并且可以通过所提出的缓冲器重新配置来缓解这种电荷转移,而不会对输入阻抗增强器的操作产生不利影响。所提出的神经记录器前端实现了最先进的性能,面积消耗为 0.036 mm2,输入参考噪声为 1.32 µV rms(1 Hz 至 200 Hz)和 3.36 µV rms(0.2 kHz 至 10 kHz),功耗为 13.7 µW(1.8 V 电源),以及 50 Hz 时的 CMRR 和 PSRR ≥ 83 dB。
- 使用相关矩阵并分析每个功能以选择合适的培训。- 选择最合适的训练参数以提高准确性并避免过度插入/拟合。- 绘制结果并与真实数据进行比较。
尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
图 2) ENG 分类信号处理的示意图;a) 记录的 ENG 数据集分为训练集和测试集;b) 预处理块应用信号分割和去噪;c) 从运行观察窗口提取和选择特征;d) 数据驱动的分类模型训练;e) 使用从训练中校准的模型对从测试集中提取的特征进行验证以进行类别预测;f) 根据分类器结果驱动设备的决策规则。
