课程描述 本课程旨在讨论涉及神经元和神经肌肉发育的分子机制,重点是身体活动、健康和疾病。它将重点关注分子和环境线索,这些线索发出信号并促进分化、生长和目标发现,以及突触或神经肌肉连接的细化以及区域和细胞身份的获得。具体主题包括细胞信号传导的基础知识、神经诱导、模式化、轴突引导机制、细胞迁移、增殖和死亡、目标识别和突触形成和消除。从这些基本发育机制中获取的信息将用于讨论我们对影响健康和身体活动的神经系统疾病发病机制的理解的最新进展。 关于考试和测验的重要信息:考试将基于讲座、幻灯片和特定讲座发布的补充材料中涵盖的材料。考试将包括多项选择题和判断题。强烈建议您参加课程。测验将包括测验前讲座中涵盖的材料,并包括判断题。测验不会累积。整个学期将有 5 次测验,在课堂上不定期进行。请做好准备来上课。错过的测验将不予补考。最好的 4 次测验将计入最终的 10%。
每只大鼠用聚氨酯(1.2 mg/kg)腹膜内麻醉,然后将大鼠的头部固定在立体定位框架中。使用牙科钻头暴露和去除左顶叶皮层。使用伺服控制的加热垫,将体温设置为37°C。在改变麻醉深度时,使用氨基甲酸酯初始剂量的10%用于控制晶须和不规则呼吸的自发运动。通过微驱动器(美国WPI,美国)将钨微电极(1-3MΩ,FHC)垂直插入枪管皮层的后侧内侧。所有单元均记录从600到1000毫米的皮质的深度记录。放大器的带通为0.3-10 kHz,一个前置放大的信号。获得的数据保存在计算机(伊朗科学梁)上。神经元电活动被视为单个单元的活性,其信号噪声比至少为3:1。然后使用一个窗口歧视器的离线分散器来隔离每个神经元(8、21、22)。
Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many神经退行性疾病,包括帕金森氏病和突触性疾病。尽管在许多情况下尚未清楚地确定神经病理学与致病候选者之间的直接联系,但NCRNA对导致神经退行性疾病中细胞功能障碍的分子过程的贡献已经解决,这表明它们可能在这些疾病的病理学中起作用。本综述的目的是概述和讨论最近的文献,这些文献涉及帕金森病和突触核苷模型中神经病理学不同方面的基于RNA的机制的作用。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年12月14日发布。 https://doi.org/10.1101/2022.06.14.495887 doi:Biorxiv Preprint
摘要:神经生物学研究的当前趋势着重于分析大脑结构内的复杂相互作用。要进行相关的实验,通常必须使用具有未受阻迁移率的动物并利用能够无线传输数据的电生理设备。在先前的研究中,我们引入了一个开源无线电生理系统,以克服这些挑战。尽管如此,该原型表现出多种局限性,例如无线模块的重量,冗余系统组件,采样率降低,电池寿命有限。在这项研究中,我们推出了开源无线电生理系统的增强版本,该系统是针对啮齿动物大脑中神经活动的体内监测而定制的。该新系统已在体内神经活动的实时记录中成功测试。因此,我们的开发为研究人员提供了一种研究复杂大脑功能的成本效益且利用的工具。
1索邦大学,脑研究所 - 巴黎脑研究所-ICM,CNR,Inria,Inserm,inserm,ap-hp,delapitiéSalpêtrière医院,F-75013,法国巴黎2,法国2应用科学和智能系统,国家研究委员会,POZZUOLI,ITALY 3 INTALITE SYSTERSILIL法国马赛4萨萨里大学,生物医学科学系,Viale San Pietro,07100,意大利萨萨里5号IRCCS E. Medea科学研究所,癫痫病单元,通过Costa Alta 37,31015,ITALY 37,31015,意大利Conegliano
适当的皮质层压对于认知,学习和记忆至关重要。在体感皮质中,以层状特异性方式详细介绍了锥体式神经元,以决定突触伴侣和整体纤维组织。在这里,我们利用男性和雌性小鼠模型,单细胞标记和成像方法来识别层状特异性侧支的内在调节剂,也称为间隙,轴突分支。我们为II/III层锥体神经元的稳健,稀疏,标记开发了新方法,以获得轴突分支形态的单细胞定量评估。,我们将这些方法与细胞自主的功能丧失(LOF)和过表达(OE)在体内候选筛查中结合在一起,以鉴定皮质神经元轴突分支层压板的调节剂。我们将细胞骨架结合蛋白DREBRIN(DBN1)的作用赋予调节II/III层皮质投射神经元(CPN)侧面轴突在体外的调节中的作用。LOF实验表明,DBN1是抑制II/III层CPN侧支轴突分支在IV层中的伸长的必要条件,在其中,通常不存在轴突通过II/III层CPN分支的轴突分支。相反,DBN1 OE产生过量的短轴突突起,让人联想到未能拉长的新生轴突侧支。结构 - 功能分析暗示DBN1 S142磷酸化和DBN1蛋白结构域已知可介导F-肌动蛋白捆绑和微管(MT)耦合,作为DBN1 OE时侧支分支的必要条件。综上所述,这些结果有助于我们理解调节兴奋性CPN中侧支轴突分支的分子机制,这是新皮层回路形成的关键过程。
摘要 硅芯片上的人工神经元的发明是教育技术的一大进步。这些人工神经元的灵感来自人脑的工作方式,已被开发用于执行一系列可用于教学的功能。这些硅基神经元旨在帮助可视化和理解复杂的神经过程,使其成为教育工作者和学生的宝贵工具。它们通过建模和模拟大脑网络为进一步研究神经科学和认知科学提供了独特的机会。此外,这些合成神经元可用于为各种教学应用创建特定模型。这一突破为更深入地研究神经网络铺平了道路。关键词-硅芯片上的神经网络、人工智能、人脑、神经元建模、硅制成的神经元、具有神经形态特性的硬件、硅神经元芯片的实现。
经颅磁刺激 (TMS) 线圈位置和脉冲波形电流通常用于在目标大脑区域实现指定的电场剂量。通过包括皮质上电场剂量的实时精确分布,可以改进 TMS 神经导航。我们介绍了一种方法并开发了软件来实时计算大脑电场分布,使其易于集成到神经导航中,并具有与一阶有限元法 (FEM) 求解器相同的精度。首先,将头部和允许的线圈位置之间的表面上的白噪声磁流产生的电场的跨度基组 (< 400) 正交化以生成模式。随后,利用互易和惠更斯原理通过 FEM 计算头部和线圈之间的表面上的模式引起的场,这些场与分离表面上的在线(实时)计算的一次场结合使用以评估模式扩展。我们对 8 名受试者的 FEM 和实时计算的 E 场进行了比较分析,使用了两种头部模型类型(SimNIBS 的“headreco”和“mri2mesh”管道)、三种线圈类型(圆形、双锥和 8 字形)和 1000 个线圈位置(48,000 次模拟)。任何线圈位置的实时计算都在 4 毫秒 (ms) 以内,适用于 400 种模式,并且需要 GPU 上不到 4 GB 的内存。我们的解算器能够在 4 毫秒内计算 E 场,使其成为将 E 场信息集成到神经导航系统中的实用方法,而不会对帧生成造成重大开销(分别在 50 毫秒和 20 毫秒内每秒 20 帧和 50 帧)。
失调与神经发育和神经退行性疾病均相关,并且这些疾病中的许多特征是认知功能受损。HDAC4在脊椎动物和无脊椎动物中的细胞核和细胞质之间穿梭,核和/或细胞质HDAC4的量的改变与这些疾病有关。在果蝇中,HDAC4在记忆的调节中也起着至关重要的作用,但是,其作用的机制尚不清楚。核和细胞质限制的HDAC4突变体,以研究HDAC4亚细胞分布,转录变化和神经元功能障碍之间的机械联系。在蘑菇体形态发生,眼睛发育和长期记忆中的定义与核HDAC4的丰度增加相关,但与最小的转录变化有关。尽管HDAC4在神经元核内将MEF2隔离为点状灶,但在HDAC4的过表达时未观察到MEF2活性的改变,而MEF2的敲低对长期记忆没有影响,这表明HDAC4可能不会通过MEF2作用。为此,HDAC4中MEF2结合位点的突变也对核HDAC4诱导的长期记忆或眼睛发育中的损伤没有影响。相反,MEF2结合位点的突变以及通过MEF2 RNAi的共表达来改善蘑菇体形态发生的缺陷,因此核HDAC4通过MEF2起作用以破坏蘑菇体的发育。这些数据提供了有关HDAC4亚细胞分布失调的机制,会损害神经功能,并为进一步研究提供了新的途径。