1赫尔蒂大脑健康研究所,t'ubingen大学,72076 t ubingen,德国2 t'ubingen ai中心,德国72076 t'ubingen,德国3 Champalimaud中心,Champalimaud基金会,Champalimaud Foundation,Champalimaud Foundation,1400-038,1400 - 038 VIB-Neuroelectronics Research Flanders (NERF), Belgium 6 Department of Computer Science, KU Leuven, 3001, Leuven, Belgium 7 Department of Electrical Engineering, KU Leuven, 3001, Leuven, Belgium 8 Sorbonne Universit´e, INSERM, CNRS, Institut de la Vision, 75012 Paris, France 9 Baylor College of Medicine, Houston,美国德克萨斯州德克萨斯州77030,美国10眼科部,拜尔斯眼科研究所,斯坦福大学,斯坦福大学,加利福尼亚州94303,加利福尼亚州,美国11号,美国11经验推断,Max Planck Intelligent Systems,72076 T ubingen,德国,德国72076 t'ubingen +通信
。CC-BY-NC 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2023 年 1 月 13 日发布了此版本。;https://doi.org/10.1101/2022.09.12.507637 doi:bioRxiv 预印本
摘要 额叶皮层被认为是许多高级认知能力的基础,从自我控制到长期规划。为了反映这些不同的需求,额叶神经活动具有众所周知的特殊性,其调节特性与无数的行为和任务特征相关。这种复杂的调节方式使得很难提取控制额叶神经活动的组织原则。在这里,我们对比了两种成功但看似不相容的方法,它们已经开始应对这一挑战。受单神经元调节的不可解释性的启发,第一种方法将额叶计算视为任意神经元混合所经过的动态轨迹。相比之下,第二种方法试图用皮层细胞类型的生物多样性来解释额叶活动的功能多样性。受最近在额叶神经元中发现的功能簇的启发,我们提出了这些群体和细胞类型特定方法在神经计算方面的一致性,并提出了这样的猜想:进化继承的细胞类型约束创建了额叶群体动态必须在其中运行的支架。
摘要 神经递质共传递的必要性和功能意义仍不清楚。谷氨酸能“KNDy”神经元共表达 kisspeptin、神经激肽 B (NKB) 和强啡肽,并表现出高度刻板的同步行为,该行为读取促性腺激素释放激素 (GnRH) 神经元树突以驱动偶发性激素分泌。使用扩展显微镜,我们显示 KNDy 神经元与 GnRH 神经元树突进行大量紧密的非突触对接。电生理学和共聚焦 GCaMP6 成像表明,尽管所有三种神经肽都从 KNDy 终端释放,但只有 kisspeptin 能够激活 GnRH 神经元树突。从 KNDy 神经元中选择性删除 kisspeptin 的小鼠未能表现出脉动性激素分泌,但保持了同步的偶发性 KNDy 神经元行为,这被认为取决于反复的 NKB 和强啡肽传递。这表明 KNDy 神经元通过高度冗余的神经肽共传递来驱动间歇性激素分泌,而这一过程由 GnRH 神经元树突和 KNDy 神经元上的差异突触后神经肽受体表达所协调。
反对者:Lorenz Studer 教授 斯隆凯特琳研究所 发育生物学系 考试委员会:Anna Falk 教授 隆德大学 干细胞治疗系 András Simon 教授 卡罗琳斯卡医学院 细胞与分子生物学系 Åsa Mackenzie 教授 隆德大学 生物体生物学、生理学与环境毒理学系
行为的连续性要求动物在相互排斥的行为状态之间平稳过渡。控制这些转变的神经原理尚不清楚。秀丽隐杆线虫自发地在两个相反的运动状态(向前和向后运动)之间切换,这种现象被认为反映了中间神经元 AVB 和 AVA 之间的相互抑制。在这里,我们报告说,自发运动及其相应的运动回路不是单独控制的。AVA 和 AVB 既不是功能等效的,也不是严格相互抑制的。AVA 而不是 AVB 保持去极化的膜电位。虽然 AVA 在快速时间尺度上阶段性地抑制了正向促进中间神经元 AVB,但它在较长的时间尺度上保持了对 AVB 的紧张性、突触外兴奋。我们提出,AVA 在不同时间尺度上具有相反极性的紧张性和阶段性活动,充当主神经元,打破了底层正向和反向运动回路之间的对称性。该主神经元模型为由互斥的运动状态组成的持续运动提供了一种简约的解决方案。
摘要 为了发挥和保持功能,单个神经元类型必须在发育过程中选择并在整个生命过程中保持其独特的终端身份特征,例如特定神经递质受体、离子通道和神经肽的表达。在这里,我们报告了一种分子机制,该机制使秀丽隐杆线虫腹侧神经索中的胆碱能运动神经元 (MN) 能够选择并保持其独特的终端身份。该机制依赖于保守的终端选择器 UNC-3 (Collier/Ebf) 的双重功能。UNC-3 与 LIN-39 (Scr/Dfd/Hox4-5) 协同作用,直接共同激活胆碱能 MN 特有的多种终端身份特征,但也拮抗 LIN-39 激活替代神经元身份终端特征的能力。unc-3 的缺失会导致 LIN-39 转录靶标发生转换,从而激活替代的(非胆碱能 MN 特有的)终端特征并出现运动缺陷。终端选择器阻止转录转换的策略可能构成整个生命过程中保护神经元身份的一般原则。
一个部门基因和环境,麦克斯·普朗克精神病学研究所,德国慕尼黑80804。b国际马克斯·普朗克(Max Planck)转化精神病学研究院(RIVS-TP),80804,德国慕尼黑。C计算生物学研究所,计算健康中心,Helmholtz Munich,85764,德国Neuherberg。 d Tum Life Sciences Weihenstephan,慕尼黑技术大学,85354,德国Freising。 e瑞典斯德哥尔摩卡罗林斯卡研究所生理学和药理学系。 f生理基因组学,生物医学中心(BMC),LMU慕尼黑医学学院,82152,PlaneGG-Martinsried,德国。 G Max Planck精神病学研究所,德国慕尼黑80804。 H TUM计算,信息和技术学院,慕尼黑技术大学,85748,德国Garching Bei Muenchen。C计算生物学研究所,计算健康中心,Helmholtz Munich,85764,德国Neuherberg。d Tum Life Sciences Weihenstephan,慕尼黑技术大学,85354,德国Freising。e瑞典斯德哥尔摩卡罗林斯卡研究所生理学和药理学系。f生理基因组学,生物医学中心(BMC),LMU慕尼黑医学学院,82152,PlaneGG-Martinsried,德国。G Max Planck精神病学研究所,德国慕尼黑80804。H TUM计算,信息和技术学院,慕尼黑技术大学,85748,德国Garching Bei Muenchen。
摘要:仿生神经元接口 (BNI) 的创建已成为从神经科学到人工智能等不同研究领域的当务之急。BNI 是二维或三维 (3D) 人工接口,模仿生物神经网络的几何和功能特征,以重建、理解和改善神经元功能。BNI 的研究是治疗神经元疾病和创建创新人工神经网络 (ANN) 的关键。为了实现这些目标,3D 直接激光写入 (DLW) 已被证明是一种用于复杂几何形状 BNI 的强大方法。然而,对 BNI 的大规模、高速制造的需求要求将 DLW 技术与 ANN 相结合。ANN 是一种受生物神经元启发的计算算法,已显示出前所未有的提高数据处理效率的能力。ANN 与 DLW 技术的结合为高效制造大规模 BNI 提供了一条创新途径,也可以启发为 ANN 设计和优化新型 BNI。本观点回顾了 BNI 的 DLW 进展,并讨论了 ANN 在 BNI 设计和制造中的作用。
标题:皮层内微刺激脉冲波形和频率招募皮层神经元和神经纤维网激活的不同时空模式。作者:Kevin C. Stieger 1,2、James R. Eles 1、Kip A. Ludwig 3-5、Takashi DY Kozai 1,2,6-8 附属机构:1. 匹兹堡大学生物工程系,宾夕法尼亚州匹兹堡 2. 匹兹堡大学认知神经基础中心,卡内基梅隆大学,宾夕法尼亚州匹兹堡 3. 威斯康星大学麦迪逊分校生物医学工程系,威斯康星州麦迪逊 4. 威斯康星大学麦迪逊分校神经外科系,威斯康星州麦迪逊 5. 威斯康星转化神经工程研究所 (WITNe),美国威斯康星州麦迪逊 6. 匹兹堡大学神经科学中心,宾夕法尼亚州匹兹堡 7. 匹兹堡大学麦高恩再生医学研究所,宾夕法尼亚州匹兹堡 8. 匹兹堡大学脑神经技术中心宾夕法尼亚州匹兹堡研究所