Vadim Bolshakov 恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用 陶武晨 GluD1 在大脑中的作用 11:00-11:30 咖啡休息,品尝当地甜点 11:30-1:35 第二节 感觉和神经调节 主席:庄汉婷 宋德华 Cav1.2-Filamin A 相互作用 Uhtaek Oh Tentonin 3,一种具有独特结构和门控特性的机械敏感通道 王云 转录组-形态学-功能整合分析揭示 TSPAN8 在初级感觉不同亚型轴突再生中双向调节 张旭 平行上升脊髓-橄榄通路用于感觉运动转化 李玉龙 通过构建多色基因编码的 GRAB 传感器监视体内神经调节 1:35-2:30 午餐休息 2:30-5:00 第五节转化医学与脑部疾病 主席:Bong-Kiun Kaang Tian-Ming Gao ATP 信号与抑郁症 Satoshi Kida cAMP 信号通路在 PTSD 中的作用 Min Zhuo ACC 和 AC1:过去、现在和未来 Yutian Wang 肽介导的蛋白质降解 - 研究工具和治疗应用 QI Wan 一种合成的 BBB 通透性三肽通过增加缺血性脑中的甘氨酸来提供神经保护 Ekaterina Pchitskaya 正常和正常脑组织中树突棘的 3D 形状和内质网功能分析
指导遵循语言模型通常表现出不良的偏见。这些不良偏见可能会在语言模型的现实世界中加速,在这种模型的现实世界中,通过零射击的提示,使用了广泛的指示。为了解决这个问题,我们首先定义了偏置神经元,该神经元显着影响偏见的产出,并在经验上证明其存在。此外,我们提出了一种新颖而实用的缓解方法CRISPR,以消除在遵循教学遵循的环境中语言模型的偏置神经元。crispr au-fomations确定有偏见的输出,并使用可解释性方法来影响偏见输出作为偏见神经元的神经元。实验结果证明了我们方法在减轻零射击指令遵循设置下的偏见的有效性,但失去了模型的任务绩效和现有知识。实验结果揭示了我们方法的普遍性,因为它在各种指令和数据集中显示出鲁棒性。令人惊讶的是,我们的方法可以通过仅消除少数神经元(至少三个)来使语言模型的偏见。
Cri du Chat(CDC)综合征是一种罕见的染色体疾病,这是由于染色体之一的短臂上发生的尺寸删除而导致的。这种疾病影响了50,000个出生,是导致发育迟缓的原因,其机制仍然无法解释。tert,sema5a,ctnnd2,tppp,映射在5个短臂中,已知在大脑中表达,并在神经系统的发育,少突核细胞以及谷氨酸和多巴胺剂的突触传播中发挥作用。了解它们的单倍不足如何影响疾病的发展和表现。在没有动物模型和可及的人体组织,人类多能干细胞(IPSC)的情况下,直接从患者体细胞中重新编程了一个新的疾病模型区域,因为它们几乎可以分化为任何细胞类型。我们的研究报告首次报道了CDC-IPSC线的神经元干细胞(NSC)的产生,此外,随后分化为异质性神经元种群。还通过比较了IPSC,NSC和神经元线中的表达水平来评估提到的基因的基因表达。本研究代表了创建体外CDC神经元模型的第一种也是最具创新性的方法,以具有研究病理过程的新转化框架。
昼夜节律功能障碍是帕金森病(PD)的标志,在PD患者中已经描述了核心时钟基因BMAL1的表达降低。bmal1是核心昼夜节律函数所必需的,但也具有非节律函数。种系BMAL1缺失会导致小鼠的脑氧化应激和突触丧失,并且会加剧多巴胺能神经变性,以响应毒素MPTP。在这里,我们检查了细胞类型 - 特异性BMAL1缺失对体内多巴胺能神经元活力的影响。我们观察到,BMAL1的全球,产后缺失导致酪氨酸羟化酶 +(Th +)多巴胺能神经元的自发丧失。这不是通过光诱导的行为昼夜节律破坏来复制的,也不是由星形胶质细胞或小胶质细胞特异性BMAL1缺失引起的。然而,泛神经元或神经元特异性BMAL1缺失会导致SNPC中Th +神经元的细胞自主丧失。bmal1缺失并未改变α-突触核蛋白原纤维注射后神经元丧失的百分比,尽管BMAL1 -KO小鼠在基线时的神经元较少。转录组学分析表明,参与氧化磷酸化和帕金森氏病的途径失调。这些发现证明了BMAL1在调节多巴胺能神经元存活中的细胞自主作用,并且可能对PD的神经保护具有重要意义。
脉冲神经网络 (SNN) 是一种很有前途的受大脑启发的节能模型。与传统的深度人工神经网络 (ANN) 相比,SNN 表现出卓越的效率和处理时间信息的能力。然而,由于其不可微的脉冲机制,训练 SNN 仍然是一个挑战。替代梯度法通常用于训练 SNN,但与 ANN 相比,其准确性往往较差。我们通过对基于泄漏积分和激发 (LIF) 神经元的 SNN 的训练过程进行分析和实验研究,将准确性的下降与时间维度上梯度的消失联系起来。此外,我们提出了互补泄漏积分和激发 (CLIF) 神经元。CLIF 创建了额外的路径来促进计算时间梯度的反向传播,同时保持二进制输出。CLIF 是无超参数的,具有广泛的适用性。在各种数据集上进行的大量实验表明,CLIF 比其他神经元模型具有明显的性能优势。此外,CLIF 的性能甚至略优于具有相同网络结构和训练条件的优秀 ANN。代码可在 https://github.com/HuuYuLong/Complementary-LIF 获得。
中枢神经系统中乙酰胆碱(ACH)神经元在较高的大脑功能(例如注意力,学习和记忆以及运动)过程中需要协调神经网络活动。在许多神经推测和神经退行性疾病中都描述了受干扰的胆碱能信号传导。此外,其他信号分子(例如谷氨酸和GABA)与ACH的共透析与脑功能或疾病中的基本作用有关。但是,在发育过程中ACH神经元变得胆碱能何时尚不清楚。因此,了解胆碱能系统如何发展和活跃的时间表是理解大脑发育的关键部分。为了研究这一点,我们使用转基因小鼠将ACH神经元与TDTomato有选择性标记。我们在产前和产后发育期间在不同时间点成像了串行切片的大脑,并产生了全脑重建。我们发现了三个关键的时窗 - 在产前两个,一个在产后大脑中 - 大多数ACH神经元种群在大脑中胆碱能。我们还发现,胆碱能基因表达是在皮质ACH室中启动的,而大脑皮质由基础前脑的胆碱能投射神经元支配。综上所述,我们表明ACH神经元种群存在并在产后第12天之前变为Cho-Linergic,这是主要感觉过程的开始,例如听力和视力。我们得出的结论是,ACH神经元的诞生和胆碱能基因的启动在发育过程中是时间分离的,但由大脑解剖结构高度协调。
睡眠障碍会影响世界各地数百万的人,并与精神病患者的合并症很高。虽然目前的催眠药主要增加了非比型眼运动睡眠(NREM),但缺乏有选择地起作用快速眼动睡眠(REMS)的药物。这项在雄性大鼠中进行的多个学术研究表明,第一类选择性褪黑激素MT 1受体部分激动剂UCM871增加了REM的持续时间而不会影响NREM的持续时间。UCM871的REMS促进作用是通过以剂量的方式抑制ceruleus(LC)去甲肾上腺素(NE)神经元的响应方式,表达MT 1受体。通过MT 1药理学拮抗作用和腺相关病毒(AAV)载体消除了REMS持续时间的增加和UCM871对LC-NE神经元活性的抑制,从而选择性地击倒了LC-NEMERONS中的MT 1受体。总而言之,MT 1受体激动剂抑制了LC-NE神经元和触发REM,因此代表了与REMS障碍相关的REMS疾病和/或精神疾病的新机制和靶标。
摘要。由于神经元结构的复杂性和某些区域的极弱信号,从大规模光学显微镜图像中重建神经元是一项具有挑战性的任务。传统的分割模型建立在 vanilla 卷积和体素损失的基础上,难以在稀疏的体积数据中建模长距离关系。因此,特征空间中的弱信号与噪声混合,导致分割中断和神经元追踪结果过早终止。为了解决这个问题,我们提出了 NeuroLink,为网络添加连续性约束,并利用多任务学习方法隐式地模拟神经元形态。具体来说,我们引入了动态蛇形卷积来提取神经元稀疏管状结构的更有效特征,并提出了一种易于实现的基于形态的损失函数来惩罚不连续的预测。此外,我们指导网络利用神经元的形态信息来预测神经元的方向和距离变换图。我们的方法在低对比度斑马鱼数据集和公开可用的 BigNeuron 数据集上实现了更高的召回率和准确率。我们的代码可以在https://github.com/Qingjia0226/NeuroLink上找到。