通过简单的合成方法利用基于地球丰富元素的低成本,高活性和鲁棒的氧气进化反应(OER)电催化剂,这对于通过水电解而对绿色水力产生而言至关重要。在这项工作中,Nio,Co 3 O 4和Nico 2 O 4纳米颗粒层具有相同的表面形态,通过简单的喷雾热解方法在相同的沉积条件下制备了相同的表面形态,并且相对研究了其OER活性。在所有这三个电催化剂中,NICO 2 O 4显示了420 mV的最低电位,以驱动基准电流密度为10 mA cm -2和最小的Tafel斜率(84.1 mV dec -1),这些密度与基准标准的商业RUO 2电催化剂的OER性能相当。NICO 2 O 4的高OER活性归因于Co和Ni原子之间电子性质的协同作用和调制,这大大降低了驱动OER活动所需的过电位。因此,据信,通过这种简单方法合成的NICO 2 O 4将是一种竞争性候选者作为工业电催化剂,具有高效率和低成本的大规模绿色氢生产,这是通过水电解产生的。
摘要:磁接近性诱导的磁性磁性在过去十年中刺激了密集研究。然而,到目前为止,在相关异质结构中LNO层中的磁顺序尚未达成共识。本文报告了(111) - 定向LNO/LAMNO 3(LMO)超级晶格的分层铁磁结构。发现,超级晶格的每个时期都由一个绝缘的LNO间相相(厚度五个单位细胞,〜1.1 nm),一个金属LNO-INNER相位,是一个金属LNO-INNER相,一个导电性LMO-Interflacial相(厚度较差,厚度为3.0.7 nm),以及一个绝缘的LMO-inners nersners-nernernnernernernnernernernnernernernnernernernnernernnernernnernernernnernernernnernernernnernernernnernernnernernernnernernnernernnernernnernernnernernnernernnerners nernernnerners nerners nernernnernerners。所有这四个阶段都是铁磁性的,显示出不同的磁化。MN到Ni Interlayer电荷转移负责层次磁性结构的出现,这可能会在LNO/LMO界面上引起磁相互作用,并在LMO间接层内的双重交换。这项工作表明接近效应是操纵复杂氧化物的磁态和相关特性的有效手段。关键字:LANIO 3,LAMNO 3,接近效应,电荷转移,分层铁磁结构
为我们在地球上的生命,我们都依靠干净的水。无论如何,经常排放到天然水供应中的工业和住宅污染物增加了生态系统。几项研究报告说,包括玫瑰孟加拉,罗达矿B,亚甲基蓝色(MB),靛蓝,红色,焦糖,维多利亚蓝色,红色120,胸腺蓝色,eiochrome,erioChrome,erioChrome,eiiochrome,甲基蓝色(MB)和甲基蓝色(MB),1-5在整个生产和处理过程中丧失和处理的染料和处理。6这种染色的废水包含非生物降解,极具毒性和有色色素,可能对生物有毒且有害。7,8这促使来自世界各地的学者通过开发有效的方法来清洁或处理水来解决问题。污染的水可以通过分解
氧化物异质结构中的界面电荷转移产生了丰富的电子和磁现象。设计异质结构,其中一个薄膜成分表现出金属-绝缘体转变,为静态和动态控制此类现象开辟了一条有希望的途径。在这项工作中,我们结合深度分辨的软 x 射线驻波和硬 x 射线光电子能谱以及偏振相关的 x 射线吸收光谱,研究了 LaNiO 3 中的金属-绝缘体转变对 LaNiO 3 /CaMnO 3 界面处电子和磁态的影响。我们报告了在金属超晶格中直接观察到的界面 Mn 阳离子的有效价态降低,该超晶格具有高于临界的 LaNiO 3 厚度(6 个晶胞,uc),这是由流动的 Ni 3 deg 电子向界面 CaMnO 3 层中的电荷转移促成的。相反,在厚度低于临界值 2u.c. 的 LaNiO 3 绝缘超晶格中,由于界面电荷传输受阻,整个 CaMnO 3 层中观察到 Mn 的有效价态均匀。切换和调节界面电荷传输的能力使得能够精确控制 LaNiO 3 /CaMnO 3 界面上出现的铁磁状态,因此对下一代自旋电子器件的未来设计策略具有深远的影响。
摘要:制备了NiO/β-Ga2O3异质结栅场效应晶体管(HJ-FET),并通过实验研究了在不同栅极应力电压(VG,s)和应力时间(ts)下器件的不稳定性机制。发现了器件在负偏压应力(NBS)下的两种不同退化机制。在较低的VG,s和较短的ts下,NiO体陷阱捕获/脱捕获电子分别导致漏电流的减少/恢复。在较高的VG,s或较长的ts下,器件的传输特性曲线和阈值电压(VTH)几乎永久地负移。这是因为界面偶极子几乎永久地电离并中和了异质结界面上的空间电荷区(SCR)中的电离电荷,导致SCR变窄。这为研究NiO/β-Ga2O3异质结器件在电力电子应用中的可靠性提供了重要的理论指导。
摘要:本文设计了高性能NiO/β-Ga 2 O 3 垂直异质结二极管(HJD),其具有由两层不同长度的p型NiO层组成的双层结终端扩展(DL-JTE)。底部的60 nm p-NiO层完全覆盖β-Ga 2 O 3 晶片,而上部60 nm p-NiO层的几何形状比方形阳极电极大10 μm。与单层JTE相比,双层JTE结构有效抑制了电场集中,使击穿电压从2020 V提高到2830 V。此外,双p型NiO层允许更多空穴进入Ga 2 O 3 漂移层,降低了漂移电阻,比导通电阻从1.93 mΩ·cm 2 降低到1.34 mΩ·cm 2 。采用DL-JTE结构的器件功率因数(PFOM)达到5.98 GW/cm 2 ,是传统单层JTE结构的2.8倍。这些结果表明,双层JTE结构为制备高性能Ga 2 O 3 HJDs提供了一种可行的方法。
诺丁汉大学的物理与天文学学院,诺丁汉NG7 2rd,英国B物理学系,国王Khalid Rd的Taibah University-Yanbu科学系。Al Amoedi, 46423, Yanbu El-Bahr, 51000, Saudi Arabia c Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea d Laboratory of Semiconducting and Metallic Materials (LMSM), University of Biskra 07000, Algeria e Physics Department, College of科学,乔夫大学,P.O。盒子:2014年,沙特阿拉伯萨卡卡,萨卡卡,物理系,科学与人文学院,萨克拉大学,萨克拉大学,11911年,沙特阿里比亚艾里比亚g物理系,阿尔巴哈大学,65931,65931,萨特阿拉伯,萨特阿拉伯,阿拉伯,大学 Riyadh 11671, Saudi Aribia i Departamento de Engenharia Elétrica, Universidade Federal de São Carlos (UFSCAR), 13560-905 São Carlos, SP, Brazil j Departamento de Física, Universidade Federal de São Carlos (UFSCAR), 13560-905 São Carlos, SP, Brazil,联邦联邦ESãoCarlosK-SãoCarlos物理研究所,圣保罗大学,PO Box 369,SãoCarlos,SéCarlos,SP 13560-970,巴西LectionalmodeciênciasbausbásicasBásicas-faculdadede Zootecnia e Engenharia e Engenharia deAlimentos,sep.5 dea pauliment,sucliendss secepta caudo sesp ando caudo caudo caudo souncyidide caudo caudo, Pirassununga,SP,巴西M微电学学院,西迪安大学,西安,中国北部,电力电子系统中心,弗吉尼亚理工学院和州大学,弗吉尼亚州布莱克斯堡,弗吉尼亚州,弗吉尼亚州24060,美国O物理学,美国联邦大学,欧罗大学联邦大学
因此,电荷载体(P型MOX中的孔)运输发生在狭窄的HAL内,导致其高度电阻性行为。1因此,当使用p型金属氧化物用作活性传感层时,它们的响应即与加油分析物相互作用后,其电阻/电导率的变化很低。1为了提高其电导率,以实现对特定气体分析物的高反应,通常在高温下(300–500 1 C)进行P型MOX。3–6然而,高温操作导致高功耗阻碍了P型MOX的商业化。因此,在温度下达到P型MOX传感器o 300 1 C的高性能仍然是一个巨大的挑战。在这方面,该领域工作的研究人员正在尝试不同的
摘要:无机选择性接触和卤化物钙钛矿 (HaPs) 之间的界面可能是使用这些材料制造稳定且可重复的太阳能电池的最大挑战。NiO x 是一种具有吸引力的空穴传输层,因为它适合 HaPs 的电子结构,而且高度稳定且可以低成本生产。此外,NiO x 可以通过可扩展且可控的物理沉积方法(如射频溅射)制造,以促进可扩展、无溶剂、真空沉积的基于 HaP 的太阳能电池 (PSC) 的探索。然而,NiO x 和 HaPs 之间的界面仍然无法得到很好的控制,这有时会导致缺乏稳定性和 V oc 损失。在这里,我们使用射频溅射来制造 NiO x,然后在不破坏真空的情况下用 Ni y N 层覆盖它。Ni y N 层在 PSC 生产过程中对 NiO x 进行双重保护。首先,Ni y N 层保护 NiO x 免受 Ar 等离子体将 Ni 3+ 物种还原为 Ni 2+ 的影响,从而保持 NiO x 的导电性。其次,它钝化了 NiO x 和 HaPs 之间的界面,保持了 PSC 的长期稳定性。这种双重效应将 PSC 效率从平均 16.5%(创纪录电池 17.4%)提高到平均 19%(创纪录电池 19.8%),并提高了器件稳定性。关键词:卤化物钙钛矿、太阳能电池、氧化镍、氮化镍、钝化、界面■简介
作者的完整列表:金,明林;劳伦斯·伯克利国家实验室,埃斯德Zou,lianfeng;太平洋西北国家实验室儿子Seoung-bum; IRA Argonne National Laboratory Bloom; Argonne National Laboratory Wang,Chongmin;太平洋西北国家实验室,环境分子科学实验室陈,吉亚(Guoying);劳伦斯·伯克利国家实验室,ESDR