建议从中子陷阱中超冷的中子的异常泄漏可能与其中的多核子形成有关。表明,即使在没有二氧化酮作为游离稳定颗粒的情况下,温度t小于10 -3 k的超低中子的气体也应形成培养基bose冷凝物。考虑了中子星中葡萄球子的稳定性的假设而产生的后果。讨论了在其中和沉重的核中形成bose冷凝物的条件。
•哺乳动物红细胞(RBC)通常不包含核,因此不能用于DNA提取•在RBC裂解方法中,首先将RBC从血液样本中裂解,然后从血液样本中取出,然后从白细胞中提取DNA(WBC)(WBC)•使用较高的DNA•使用RBC裂解方法提取量的DNA,并允许在RBC裂解方法中提取量,并将其量化用于RBC裂解方法,以使RBC溶解的量为量,并允许在RBC裂解方法中提取量的量。试剂
样本反卷积方法可估计大量组织样本中的细胞类型比例和基因表达,但它们的性能和生物学应用仍未被探索,特别是在人脑转录组数据中。在这里,使用来自大量组织 RNA 测序 (RNA-seq)、单细胞/细胞核 (sc/sn) RNA-seq 和免疫组织化学的样本匹配数据评估了九种反卷积方法。使用了来自 149 个成人死后大脑和 72 个类器官样本的每个细胞总共 1,130,767 个细胞核。结果显示,dtangle 在估计细胞比例方面表现最佳,而 bMIND 在估计样本细胞类型基因表达方面表现最佳。对于八种脑细胞类型,通过反卷积表达 (decon-eQTL) 鉴定了 25,273 个细胞类型 eQTL。结果表明,decon-eQTL 比单独的块组织或单细胞 eQTL 更能解释精神分裂症 GWAS 遗传性。还使用解卷积数据检查了与阿尔茨海默病、精神分裂症和大脑发育相关的差异基因表达。我们的研究结果在块组织和单细胞数据中得到复制,为解卷积数据在多种脑部疾病中的生物学应用提供了见解。
利用相干电磁辐射对基本量子系统进行共振激发是许多物理学实验的核心,例如原子和分子光谱、原子钟、量子信息处理等。相干激光激发有许多应用,特别是需要高精度控制量子叠加态的频率或相位时,但迄今为止它在核物理中几乎没有使用[1]。从典型的核激发能量和可用的激光光子能量之间的巨大不匹配可以理解激光激发原子核的困难。核激发已经在激光产生的等离子体中得到证实,其中相互作用是通过在强激光场中加速的电子介导的,电子在碰撞中或通过X射线范围内的轫致辐射与原子核相互作用[2]。不同的原子核已经通过同步辐射在6 – 60 keV能量范围内的跃迁上进行共振激发,寿命在纳秒到微秒范围内[3]。 Sc-45 的 12.4 keV 共振最近在欧洲 x 射线自由电子激光器 [4] 上被激发,其寿命为 0.47 秒。Th-229 原子核以其独特的低能同质异能态而闻名 [5 – 7] 。其激发能量为 8.4 eV,使核跃迁处于真空紫外 (VUV) 光谱范围内,使其可用于台式激光系统和精密光学工具的实验
硅(SI)中的供体和量子点旋转量值是可伸缩量子计算体系结构的有吸引力的候选者[1-3]。si提供了一个理想的矩阵,用于托管自旋矩形,因为它在微电子行业,弱自旋轨道耦合以及具有零核自旋的同位素的存在。nat-ural Si由三个同位素组成:28 Si(92.23%),29 Si(4.67%)和30 Si(3.1%)[4]。NAT Si中的量子量解的主要来源是由于与周围的29 Si核耦合,该核具有i = 1/2的核自旋。< / div>29 si旋转的偶极爆发在局部磁场中引起伴随,从而导致时间变化的量子共振频率[5,6]。通过使用HAHN-ECHO脉冲序列测量了对电子供体核的电子[7]的自旋相干时间[7]和电离供体核[8]的60 ms [7]和60 ms的限制。幸运的是,28 Si没有核自旋,因此可以为旋转量器提供理想的低噪声环境。在28 si层中供体旋转量值的较长连贯性时间与800 ppm残留29 si [9]是恶魔 -
磁共振光谱(MRS)是一种无创技术,可用于测量组织中不同化学成分的浓度。该技术基于与磁共振成像(MRI)相同的物理原理,以及原子内部磁场和特定核之间能量交换的检测。使用MRI,通过根据发射信号的强度分配不同的灰色值,通过分配不同的灰色值,将这种能量交换以射频信号测量。MRI和MRS之间的主要区别在于,在MRI中,发射的射频基于核的空间位置,而MRS则检测到扫描组织的化学成分。MRS产生的信息以图形方式显示为与所检测到的各种化学物质一致的峰值的频谱。MRS可以作为MRI的辅助手术。首先生成MRI图像,然后在感兴趣的位点,在体素水平(3维体积X像素)处开发MRS光谱。感兴趣的体素(VOI)通常是一个立方体或矩形棱镜,尺寸像素的体积为1至8 cm。MRI提供了大脑的解剖图像,MRS提供了与潜在动态生理学相关的功能图像。MRS可以使用现有的MRI设备执行,并通过所有新的MRI扫描仪中提供的其他软件和硬件进行修改。扫描仪中的成像时间增加了15至30分钟。
势能(超)表面描述分子系统电子态的能量及其随原子核位置变化而变化,形成分子几何的“能量景观”。它是分析分子构象、过渡态和化学反应动力学的重要工具(Thru lar 等人,1987 年)。在只有两个原子的双原子分子中,原子核的位置只能用一个坐标表示,因此势能表面简化为势能曲线 (PEC)。每条曲线对应一个电子态的群表示和角动量。数据集中核间距离的范围取决于所述系统。我们的数据集由几个选定的双原子分子系统组成,由碱金属原子对创建。这种二聚体在超冷(内部温度在 mK 范围内)分子系统、玻色-爱因斯坦凝聚和化学反应相干控制的应用中特别受关注。强极性超冷分子的可能应用包括利用极性分子之间的长距离电偶极-偶极相互作用来设计光学量子系统。极性分子的内部自由度可用作量子信息的媒介。在强激光场产生的光学晶格中创建、存储和控制此类分子可用于构建量子计算机(Pazyuk,2015 年)。
小脑和基底神经节都因其在运动控制和动机行为中的作用而闻名。这两个系统传统上被认为是独立的结构,通过单独的皮质-丘脑环路协调它们对行为的贡献。然而,最近的证据表明这两个区域之间存在丰富的直接连接。尽管有强有力的证据表明两个方向都有连接,但为了简洁起见,我们将讨论限制在从小脑到基底神经节的更明确的连接上。我们回顾了两组这样的连接:通过丘脑的双突触投射和到中脑多巴胺能核、VTA 和 SNc 的直接单突触投射。在每种情况下,我们都从解剖追踪和生理记录中回顾了这些通路的证据,并讨论了它们的潜在功能作用。我们提出证据表明,丘脑的突触外通路参与运动协调,其功能障碍会导致运动障碍,如肌张力障碍。然后,我们讨论小脑向腹侧被盖区和黑质内核的投射如何影响这些核的各自目标:腹侧被盖区和背侧纹状体中的多巴胺释放。我们认为,小脑向腹侧被盖区投射可能在基于奖励的学习中发挥作用,因此会导致上瘾行为,而向黑质内核投射可能有助于运动活力。最后,我们推测这些投射如何解释许多表明小脑在精神分裂症等精神障碍中发挥作用的观察结果。
目前有多种脑成像方式可用于临床诊断,包括超声、CT、单光子发射CT、PET 和 MRI。MRI 是一种非侵入性技术,不使用电离辐射,可生成高空间分辨率和对比度噪声比的图像。尽管自 1973 年发明 MRI 以来已有众多发展和发现,1 但 MRI 的主要局限性仍然存在:灵敏度低。2,3 MRI 信号源于样品的净磁化,这是由于自旋数通常为一半的原子核的塞曼能级之间的粒子数差异很小。传统 MRI 使用来自水质子 (1 H) 的 NMR 信号;人们正在开发多种造影剂来增强1 H MRI 信号并提供定位感兴趣区域的能力。 3–5 许多此类药物,如钆螯合造影剂,主要作用是降低 1 H 核的自旋晶格 (T 1 ) 和有效自旋自旋 (T 2 * ) 弛豫,从而增加 T 1 加权和 T 2 * 加权图像中的 MR 对比度。尽管 1 H 造影剂被广泛使用,但由于周围组织的背景信号的存在,这种方法受到限制,从而限制了对比度与噪声比的增加。此外,还有各种技术,如 BOLD 功能性 MRI、动脉自旋标记 (ASL) 和 MRA,这些技术需要多次图像采集和复杂的图像后处理程序才能准确解释数据。6,7
我们目前对早期果蝇中基因表达的调节的理解来自一次观察到几个基因的观察,就像原位杂交或观察基因表达水平,而没有构成图案的观察,就像RNA测序一样。单核RNA序列有潜力,有可能立即对许多基因的基因表达调节进行新的见解,同时基于图案化的基因表达,同时保留有关每个核之前的每个核位置的信息。为了在细胞化之前建立果蝇胚胎中单核RNA测序的使用,我们在这里查看对照和绝缘蛋白中的基因表达,DCTCF,dctcf,母体null null胚胎在核循环14。我们发现,根据基因表达,可以将早期的胚胎核分组为不同的簇。从虚拟和原位杂交中出版,我们还发现这些簇对应于胚胎的空间区域。最后,我们提供了候选差异表达的基因的资源,该基因可能显示对照和母体DCTCF无效核之间的基因表达的局部变化,而在整体中无可检测到的差异表达。这些结果突出了单核RNA测序的潜力,以揭示对早期Dro-sophila melanogaster胚胎中基因表达调节的新见解。