•开发基于Python的深度学习交易者,受到LOB快照和基线交易策略的培训,利用技术指标(例如rsi)与超人贸易代理商竞争(例如zip,shvr)。•在C + +中分布式HFT市场间套利模拟中使用XGBoost评估深度学习交易者。协整驱动的对技术指标的交易| Python,Pandas,Numpy 2025年1月•使用统计协整测试(ADF)识别具有固定差的库存对,以确保均值转换潜力。•使用布林乐队,RSI和Z分数作为进入/出口信号,通过停止损害和庞然大意的级别构建了回测引擎。•在4年内达到1.06的夏普比率为115%,表明稳健和风险调整后的盈利能力。随机选项定价引擎(蒙特卡洛和黑色choles)| Python 2024年11月•使用几何布朗运动在50多个场景中模拟资产价格路径,应用神经网络以进行波动性预测,以将定价准确性提高10%,将黑链链作为基准。•构建了一个实时交互式UI,以进行参数调整和视觉误差分析,从而通过超参数调谐优化Monte Carlo性能,MC和B-S输出之间的平均误差<5%。AI社交媒体|产品经理,客户联络与开发人员(Spacenxt Labs)| Python,JavaScript 2023年9月 - 2024年5月
9. 在图上绘制 x 和 y 点数组。10. 在图上使用不同类型的标记和线条样式。11. 声明轴的标签。(绘制售价和原价)。12. 绘制条形图 - 使用最畅销书数据集绘制年度数据,并找出多年来最畅销的类型。13. 绘制直方图 - 使用前 200 名 YouTube 用户的数据集进行绘制,并找出最受欢迎的类型。还可以使用直方图绘制每个类型的关注者。14. 回归作业(预测未来) - 绘制年份和平均气温之间的关系。你能预测未来几年的平均气温吗?你从趋势中推断出什么?15. 创建正态分布并在图形中显示(使用 Numpy + Matplotlib) - 在图中显示学生的分数并检查它是否是正态分布?这些数据的平均值、中位数和众数是什么? 16. 编写一个 Python 程序来计算电费。接受用户的上一次电表读数和当前电表读数以及每单位电费。计算用户的单位数和总账单消耗量。17. 一家公司决定给员工 5% 的奖金,如果员工的服务年限超过 5 年。编写一个 Python 程序来询问用户的工资和服务年限,并打印净奖金金额。
深入了解数据结构和数据操作。了解监督和无监督学习模型,包括线性回归、逻辑回归、聚类、降维、K-NN 和管道。使用 SciPy 包及其子包(包括 Integrate、Optimize、Statistics、IO 和 Weave)执行科学和技术计算。使用 NumPy 和 Scikit-Learn 获得数学计算方面的专业知识。掌握推荐引擎和时间序列建模的概念。理解机器学习的原理、算法和应用。了解人工智能在不同领域的各种用例中的应用,如客户服务、金融服务、医疗保健等。实现经典的人工智能技术,如搜索算法、神经网络和跟踪。学习如何应用人工智能技术解决问题,并解释当前人工智能技术的局限性。设计和构建自己的智能代理,并应用它们创建实际的人工智能项目,包括游戏、机器学习模型、逻辑约束满足问题、基于知识的系统、概率模型、代理决策功能等。了解 TensorFlow 的概念、主要功能、操作和执行管道。掌握卷积神经网络、循环神经网络、训练深度网络和高级接口等高级主题。使用 Tableau 分析数据并熟练构建交互式仪表板 了解 Hadoop 生态系统的不同组件,并学习使用 HBase、其架构和数据存储,了解 HBase 和 RDBMS 之间的区别,并使用 Hive 和 Impala 进行分区。了解 MapReduce 及其特性,并学习如何使用 Sqoop 和 Flume 提取数据。使用最流行的库 Python 的自然语言工具包 (NLTK) 了解自然语言处理的基础知识。
欢迎来到 IITK Python 和 QISKIT 数据科学 (DS)、数据分析 (DA)、机器学习 (ML) 和量子计算 (QC) 证书课程。数据科学为学生/专业人士提供了一些最有前途的职业机会,数据分析技能受到行业的高度追捧。结合机器学习从数据中学习和量子计算利用量子力学原理,这些领域将彻底改变商业、信息处理和机器智能。这所前沿学校将向参与者介绍严谨的理论、算法和科学方法,通过数据分析、机器学习和量子计算的尖端算法从大数据集中获得可操作的见解。该学校还包括大量辅助 PYTHON/QISKIT 编程项目,参与者将使用实际数据集和最新的 PYTHON 包(如 NUMPY、LINALG、MATPLOTLIB、PANDAS、SEABORN、SCIKIT-LEARN 和 QISKIT)获得数据分析、探索和可视化方面的实践经验。学校还包括解决问题的课程,为 DS、DA、ML 和 QC 中的测试/工作面试做准备。本课程的优势: • 学习 PYTHON/QISKIT 中最新的编程技术,在实习中获得无与伦比的优势 • 使用 PYTHON/QISKIT 和各种软件包建立虚拟实验室或进行项目指导 • 通过学习 PYTHON/QISKIT 和各种软件包和实用数据集,将您的技能提升到新的水平 • 学习 PYTHON/QISKIT 编程以掌握最新的 DS、DA、ML 和 QC 技术 目标受众 • B.Tech/BE/B.Sc/BBA/BCA 学生 • M.Tech/ME/M.Sc/MBA/MCA 学生 • 攻读研究的博士学者 • 工程/科学/管理学院 • 来自工业和研发组织的专业人士
Vishaal Chandrasekar SRM 科学技术研究所 摘要:本论文的主要目的是使用 Python 编程语言和 OpenCV 计算机视觉库检测图像中的脸部并进行识别。本研究的实际框架主要集中在人脸检测和识别上。Haar Cascade 算法用于人脸检测。对于面部识别,使用局部二值模式直方图算法。当今一代人工智能和机器学习技术的快速发展将世界推向了新的水平。此外,借助人工智能和机器学习等最新技术,可以解决人类面临的许多不可能的情况。人工智能和机器学习在不同领域有着广泛的应用。例如,计算机视觉、机器人、医疗、游戏和工业。数据对于机器学习和人工智能以及许多项目都至关重要。为了简单地理解人工智能,它有助于解锁任何识别人脸的设备,如智能手机。此外,本文还解释了人工智能以及机器学习的发展趋势和应用领域。因此,本论文是一套完整的理论知识以及人工智能和机器学习应用的实际实现。 关键词:算法,人工智能,数据,Haar 级联,机器学习,OpenCV,Python 缩写列表: AI - 人工智能 ML -机器学习 CERN - 欧洲核子研究组织 CV - 计算机视觉 DL - 深度学习 GB - 技嘉 GPS - 全球定位系统 IBM - 国际商业机器 ID - 识别 IDE - 集成开发环境 LISP - 列表处理 NASA - 美国国家航空航天局 NumPy - 数值 Python OpenCV - 开源计算机视觉 PIP - 首选安装程序 RGB - 红绿蓝 SDK - 软件开发工具包 QR - 快速响应 VR - 虚拟现实 XML - 可扩展标记语言 1.简介 在这个智能时代,人们被现代先进的技术所包围。通过小如手掌的设备,AI 应用程序可以访问世界各地的所有信息。人工智能软件在许多方面使人类的生活变得更简单。此外,自学习算法和低成本计算的在线数据的可用性将机器学习提升到了一个新的水平。人工智能的普及度迅速增长,已成为人类日常生活的一部分。现代智能技术的快速发展为人类带来了更美好未来的希望。虽然制造智能机器的趋势早已开始,但过去几十年一直是人工智能的梦想
S. No.主题 1 人工智能 (AI) 简介:人工智能的简介、发展和历史、各种应用领域(医疗保健、监控、分析和网络安全等。)、科学应用、机器学习 (ML) 和深度学习 (DL) 简介、AI、ML 和 DL 之间的区别、基于规则的系统、智能代理、优化问题。2 人工智能的 Python 编程:简介、数据类型、变量、运算符、输入和输出操作;环境设置、控制流 - 决策控制、循环语句等。;数据结构 - 列表、元组、字符串、字典、集合;函数式编程 - 函数类型、递归函数、Lambda 函数、模块和包; OOPs 概念、异常处理、Python 库 - numPy、matplotlib、pandas、scipy、seaborn 等。3 人工智能数学:线性代数 - 向量、标量、矩阵和矩阵运算;概率 - 基础、抽样、条件概率、相关和独立事件;统计学基础 - 集中趋势和方差的测量、概率分布(正态、二项式、泊松)、抽样理论、相关性、回归、异常值 4 数据准备和可视化:数据准备、数据预处理、特征工程 - 特征选择技术、特征优化、降维(主成分分析)、数据清理和转换、数据验证和建模;数据可视化 – 使用 Python 库的各种数据图(箱线图、散点图、2D 和 3D 图、时间序列图、直方图等)5 机器学习:机器学习基础、类型 – 监督、无监督和强化学习、机器学习的应用;分类算法 – 线性和逻辑回归(梯度下降、损失函数、交叉熵)、支持向量机、朴素贝叶斯分类器、决策树、随机森林;聚类算法 – k 均值、模型评估 – 欠拟合与过拟合、混淆矩阵、ROC、精度、召回率、F1、F2、偏差和方差。6 深度学习:简介、历史、生物神经元基础知识、多层感知器 (MLP)、反向传播、人工神经网络 - 卷积神经网络 (CNN)、RNN、LSTM、使用 Tensorflow 的 Keras 神经网络模型、迁移学习。6 人工智能的应用:文本分析 - 概述、文本处理(语法、解析和词干提取)、语义和句法分析、信息检索、图像/视频处理 - 人脸识别、对象分类。聊天机器人的实现。7 项目工作
美国,心脏病是当前在美国的最常见疾病,根据官方统计,约有50%的美国人群患有某种形式的心血管疾病。本文根据胸痛和头晕等症状进行卡方测试和线性回归分析,以预测心脏病。本文将帮助医疗部门通过在疾病的开始阶段预测患有心脏病的患者为患有心脏病的患者提供更好的帮助。CHI Square测试是为了确定通过分析IEEE数据端口的心脏病数据集的胸痛与心脏病病例之间是否存在关系。测试结果和分析表明,美国最有可能患有胸痛,头晕,呼吸急促,疲劳和恶心等症状。该测试还表明,确定了一个星期的0.5,表明包括青少年在内的所有年龄段的人都可以面临心脏病,并且随着年龄的增长而患病率增加。此外,测试表明,面对严重胸痛的参与者中有90%患有心脏病,其中大多数成功的心脏病都在男性中,只有10%的参与者被认为是健康的。评估的p值远大于0.05的统计阈值,得出结论,诸如性,运动心绞痛,胆固醇,旧峰,ST_SLOPE,肥胖和血糖等因素在心血管疾病的发作中起着重要作用。1。我们已经使用基于逻辑回归的预测模型测试了数据集,并且观察到85.12%的准确性。k eywords卡方测试,r;数据挖掘;大数据;线性回归分析;心脏病;风险因素;机器学习;心血管疾病; Python;逻辑回归; Sklearn;熊猫,numpy。ntroduction心脏病描述了可能影响心脏的各种疾病。多项研究发现,心脏病仍然是美国死亡的主要原因。他们发现各种原因导致心脏病率上升。他们强调了遗传学,年龄,生活方式和过去事件的重要性。联邦政府汇编的统计数据表明,近一半的美国人患有心血管疾病。烟草使用,高胆固醇和高血压是患心脏病的三个大风险因素。心脏病不仅是由遗传学引起的。可以通过健康的生活方式选择来预防或治疗许多形式的心脏病。心脏病的率提高是这些习惯的直接结果。年龄和家族史是无法改变的因素,因为它们是遗传确定的。确实无法消除这些风险因素,但可以采取一些步骤来减少
在孟加拉国生长了许多不同种类的香料。在这些香料中,大蒜是最重要的。尽管每年需要600,000吨大蒜,但孟加拉国仅设法生产约80,000公吨的香料[1]。根据政府的报道,其余部分主要来自印度和中国。每一天都会发现对大蒜的需求有所上升。因此,由于没有足够的供应来满足需求,价格就会更高。诸如孟加拉国农业部报道的2018年的大蒜在2018年的五十至八十塔卡。2019年对大蒜的需求激增。但是,大蒜供应没有变化。价格从2024年到250。以大蒜为例; 2019年1月1日,价格为每公斤80塔卡,但到7月14日,每公斤升至180塔卡。由于其异常行为,因此对这种变化有很大的关注。定价范围表明,增加和减少是零星的。孟加拉国贫穷的人无法承担这笔费用。数据不确定性的非结构化特征为财务预测增加了复杂性。的预测进一步混淆了这样一个事实,即天气,劳动力,储存量,运输和供求比等变量会影响结果。现代AI允许机器模仿人类的行为。使用多种ML算法,M。M。Hasan等。[2]成功消除了洋葱市场的波动,并预测了未来的洋葱价格。在金融中应用机器学习的可能性很大。为了实现这一目标,我们采用了有关大蒜价格的收集数据,我们开发了一些能够预测未来大蒜价格的ML和DL模型。如Geron等人[3]所观察到的,只有一些可用的机器学习工具包括Scikit-Learn,Tensorflow,Matplotlib,Pandas和Numpy。为了使用我们的数据集,使用各种功能选择和特征提取算法。对于第一个模型,使用了DNN。对于第二和第三模型,使用的模型类型是长期记忆(LSTM)模型。最后,第四型模型是LSTM和ML的组合结构,其中LSTM部分仅用于选择特征,而ML算法(如梯度增强回归(GBR),随机森林回归(RFR),线性回归(LR)(LR)都用于训练功能。由于我们将为大蒜每日价格产生预测,因此我们对此进行了监督的学习。根据大蒜市场的给定ML和DL模型,可以在不同来源预测该产品的价格。我们的工作集中在这一目标上。
人类神经科学使用磁共振成像(MRI)来了解大脑的结构和功能并表征某些神经系统和精神疾病。最近已经建立了大型成像队列,其中包括一千个(人类连接项目,Abide,Adni,Imagen,Eu-Aims,1000brains,abcd),向十万个人(Enigma Consortium,UK BiobAbank)。这种同类群是研究流行病学研究(UK Biobank)中许多脑部病理(精神病,成瘾,神经退行性疾病)或危险因素的影响所必需的。相应的数据通常可公开可用。除了这些大型研究外,还获得了较小的数据集,并且在认知神经科学的背景下,越来越频繁地公开(https://openneuro.org)。所有这些研究的数据分析需要医学图像处理工具,而且越来越多的统计分析和学习工具。大脑成像社区已经开发了标准,即大脑成像数据结构(BIDS)(1),以组织数据并促进大规模的统计分析。在此框架中,思维对神经影像学中的统计学习产生了许多贡献,对监督学习,基于模拟的推论和协方差模型估计的兴趣非常兴趣。这些贡献的一部分是通过NiLearn库(http://nilearn.github.io)传播的(2)。niLearn是神经科学生态系统中的关键开源库,它依赖于科学的Python stack(Numpy,Scikit-Learn,Matplotlib)。它非常成功(PYPI上下载50 K)。Nilearn由来自几个国家的许多人贡献,请参见https://github.com/nilearn/nilearn/graphs/contributors。它遵循软件开发方面的最佳实践(详尽的自动化测试,CI,完整的API文档以及叙事文档,API同质性,合理的依赖性,有关技术选择的公开讨论等)该开发由Coredev团队管理,有9个每月开会的成员。开发人员社区非常活跃,因为它在神经频道(Neurostars)等公共渠道上提供了反馈,在GitHub界面上打开问题并提取请求。最后,Mind正在将大量资源投资于临床合作。Specifically, Mind is engaged in a collaborative initiative with the Assistance Publique - Hopitaux de Paris (AP-HP), Institut Pasteur, Sainte Anne, Stanford University and Neurospin, to address clinical scenarios such as brain tumor surgeries, analysis of stroke-induced lesions ( 3 ; 4 ), understand the relationship between brain structure and cognition, or the use of ultra-high field MRI.
美国科罗拉多州科罗拉多州科罗拉多大学计算机科学系A BSTRACT心脏病是当前在美国的最常见疾病,根据性别,根据官方统计,约有50%的美国人口患有某种形式的心血管疾病。本文根据胸痛和头晕等症状进行卡方测试和线性回归分析,以预测心脏病。本文将帮助医疗部门通过在疾病的开始阶段预测患有心脏病的患者为患有心脏病的患者提供更好的帮助。CHI Square测试是为了确定通过分析IEEE数据端口的心脏病数据集的胸痛与心脏病病例之间是否存在关系。测试结果和分析表明,美国最有可能患有胸痛,头晕,呼吸急促,疲劳和恶心等症状。该测试还表明,确定了一个星期的0.5,表明包括青少年在内的所有年龄段的人都可以面临心脏病,并且随着年龄的增长而患病率增加。此外,测试表明,面对严重胸痛的参与者中有90%患有心脏病,其中大多数成功的心脏病都在男性中,只有10%的参与者被认为是健康的。评估的p值远大于0.05的统计阈值,得出结论,诸如性,运动心绞痛,胆固醇,旧峰,ST_SLOPE,肥胖和血糖等因素在心血管疾病的发作中起着重要作用。我们已经使用基于逻辑回归的预测模型测试了数据集,并且观察到85.12%的准确性。k eywords卡方测试,r;数据挖掘;大数据;线性回归分析;心脏病;风险因素;机器学习;心血管疾病; Python;逻辑回归; Sklearn;熊猫,numpy,nltk。1。tratoduction心血管疾病描述了可能影响人心脏的各种疾病。心脏病是全球最致命,最复杂的人类疾病之一[1]。对世界卫生组织(WHO)报告的报告,心血管疾病每年在全球每年造成1,790万人。[9]声称,在心脏病中,心脏将血液不足泵入影响其功能的其他身体器官。根据[2],增加心脏病可能性的某些活动是肥胖,高水平的胆固醇,高血压等。此外,年龄,遗传和过去事件也会影响发展心脏病的可能性[5]。如美国心脏协会所描述的那样,患有心脏病的人表现出各种体征和症状。这些人在睡眠中遇到挑战,心跳不规则(心率降低或增加),快速减肥和腿肿胀。但是,这些体征和症状对于不同的疾病特别是在老年人中很常见。因此,很难获得实际诊断,这可能会导致不久的将来死亡率增加。