有机电子离子泵 (OEIP) 已被研究作为一种有前途的解决方案,用于精确局部输送生物信号化合物。OEIP 小型化提供了多种优势,从更好地控制输送的时空到降低植入设备的侵入性。一种小型化途径是开发基于聚电解质填充毛细管纤维的 OEIP。这些设备可以轻松靠近目标细胞和组织,可以被视为其他“离子电子”植入物的起点。迄今为止,OEIP 和其他此类离子电子表现出有限的电极容量,因为它们通常依赖于聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐 (PEDOT:PSS) 电极。虽然这种材料在混合离子电子系统中得到了充分研究并且可行,但其体积电容受到最终氧化还原反应的限制。石墨烯是高性能电极的绝佳替代品,低成本溶液处理的石墨烯衍生物尤其有前景,表现出高电荷迁移率和理想的结构特性(轻便、灵活)。本文介绍了溶液处理的还原氧化石墨烯 (RGO) 作为 OEIPS 高性能驱动电极的应用。对 RGO 电极进行了表征,并与标准 PEDOT:PSS(和 Ag/AgCl)电极进行了比较。RGO 表现出更大的电荷存储容量,因此使用寿命更长。石墨烯支持的 OEIP 表现出改进的神经递质传输,而不会对施加的电流水平施加限制。
药物和生化的释放和输送率的动态。在传导聚合物电极[1-4]及其构造中,[5]电子电荷和(带电的)化合物之间的耦合是控制生物分子的亲和力和扩散的多功能功能。随着电荷的积累在这些电极中的变化,掺杂静电相互作用,体积膨胀和总体形态变化,从而影响生物医学综合的摄取和释放。此外,聚电解质是有效的离子交换系统,并且已经针对被动和主动药物释放应用进行了探索,[6]以纤维的形式,[7]超薄壳[8]和球体。[9]在设备结构中,共轭聚合物与聚电解质结构结合在一起,可以实现电动控制的药物输送。有机电子离子泵[10](OEIP)就是这样的离子[11,12]药物输送装置,已反复证明适合植入疗法。OEIP使用微米尺度的选择性离子导体将带电的生物分子从源储存库到目标储层或组织。OEIP已在体内通过局部递送肝透射蛋白谷氨酸[13]在体内用于调节豚鼠的听力,以通过直接将γ-氨基丁酸递送到脊髓[14]并在大鼠中停止癫痫发作,从而抑制慢性大鼠的慢性疼痛。近年来,柔性能量收获者被认为是几种分布式和自主新兴技术的替代能源。[15]然而,需要进一步的努力来实现完全或半自主的有机药物输送设备,以实现智能决策,无线沟通和自动化。在这里,我们报告了可行性,据我们所知,首次以微毛细血管的OEIP以及压电电能收割机的形式将离子型药物输送装置结合起来,这是迈向自动且高度高度局部的生物化学治疗技术的一步。[16–21],尤其是,柔性能量收获者代表了通过周围环境或人类运动和活动的定期运动或位移来为各种类型的可穿戴和可植入设备供电的有希望的能源。[22,23]通过许多实验证明了它们的可行性和实践使用的生物相容性
承担这些分歧的全球负担。[1,2]新的且高度特定的药物输送工具将有助于更好地理解复杂的神经生物学环境,并为高度局部和精确的药物输送技术铺平道路。为了最佳工作,此类设备需要达到良好的化学和生物靶特异性,同时限制了生物相容性问题或相当的副作用。如果将这些设备作为最小化的独立探针实施,则可以轻松地操纵它们以靶向特定细胞,或与不同的实验设置和感应技术结合使用,以促进广泛的诊断和治疗能力,尤其是在深层组织/有机位置。[3]在这里,我们比较了两种高精度药物输送技术,基于压力的微流体和电离基质的能力和局限性。在微流体中,药物运输受到小型流体通道中的液压的高度控制。[4,5]通过连接几个流体源和微生物流体通道,可以轻松地进行混合,开关,筛查和递送各种药物。微流体的领域包括从实验室芯片设备到游离的微流体神经探针的多种实验设置。[4,6]其他感兴趣的技术是电离,其中应用电位的调节可以使精确的剂量控制和化学特异性,只要有效的药物或神经递质是积极或负电荷的。[7]最基本的离子基因组件是有机电子离子泵(OEIP)。[8]OEIP基于一个定义明确的和封装的离子交换膜(IEM),将源电解质储存液与目标电解质分开(通常称为“离子通道”)。从广义上讲,IEM的选择性取决于固定电荷的固有极性,其电荷程度以及其孔径和密度。通过IEM离子通道从源储存库中运输,并通过离子的迁移和被动扩散来积极实现目标电解质。通过改变IEM上的施加电位,可以通过电子控制迁移离子输送率,并且可以估算出施加的电子电流的直接对应关系,并且可以估算传递的药物数量。平面OEIP设备已成功地用于各种神经系统应用,例如,通过输送γ-氨基丁酸来抑制癫痫表现活性。