结果 来自 6779 名患者的训练和验证数据集包括 14,341 张照片:9156 张正常视盘、2148 张有视乳头水肿的视盘和 3037 张有其他异常的视盘。分类为正常的百分比在各个部位从 9.8% 到 100% 不等;分类为有视乳头水肿的百分比在各个部位从 0 到 59.5% 不等。在验证集中,系统以 AUC 为 0.99(95% 置信区间 [CI],0.98 至 0.99)区分有视乳头水肿的视盘与正常视盘以及有非视乳头水肿异常的视盘,以 AUC 为 0.99(95% CI,0.99 至 0.99)区分正常视盘与异常视盘。在 1505 张照片的外部测试数据集中,该系统对视乳头水肿检测的 AUC 为 0.96(95% CI,0.95 至 0.97),灵敏度为 96.4%(95% CI,93.9 至 98.3),特异性为 84.7%(95% CI,82.3 至 87.1)。
摘要:研究弓形虫裂解物 (TLA exo) 刺激的树突状细胞衍生外泌体与霍乱毒素混合作为佐剂,在通过两种黏膜途径 (眼部和鼻内) 免疫的小鼠中的免疫原性。BALB/c 小鼠每隔 2 周注射 3 次 TLA exo 疫苗,并测量血清中的 IgG 水平以及泪液、唾液、粪便和阴道洗液中的 IgA 水平。为观察弓形虫特异性 B1 基因的表达,用 TLA exo 或 PBS exo (未用 TLA 刺激) 免疫感染 ME49 弓形虫囊肿的小鼠,并检查其脑组织。与仅用 PBS 处理的小鼠相比,通过鼻内途径接种的小鼠引起的体液和黏膜免疫反应明显更高。此外,与 PBS 对照组相比,通过眼部途径(滴眼液)接种的小鼠血清中弓形虫特异性 IgG 和泪液和粪便中的 IgA 含量明显更高。TLA exo 疫苗接种小鼠的 B1 基因表达明显低于 PBS 或 PBS exo 疫苗接种小鼠。这些结果表明,用 TLA exo 疫苗对小鼠进行眼部免疫有可能刺激全身或局部抗体反应。这项研究还强调了滴眼液疫苗作为弓形虫鼻腔疫苗替代品的优势。
结果 6779 名患者的训练和验证数据集包括 14341 张照片:9156 张正常视盘、2148 张有视乳头水肿的视盘和 3037 张有其他异常的视盘。分类为正常的百分比在各个部位从 9.8% 到 100% 不等;分类为有视乳头水肿的百分比在各个部位从 0 到 59.5% 不等。在验证集中,系统以 AUC 为 0.99(95% 置信区间 [CI],0.98 至 0.99)区分有视乳头水肿的视盘与正常视盘以及有非视乳头水肿异常的视盘,以 AUC 为 0.99(95% CI,0.99 至 0.99)区分正常视盘与异常视盘。在 1505 张照片的外部测试数据集中,该系统检测视乳头水肿的 AUC 为 0.96(95% CI,0.95 至 0.97),灵敏度为 96.4%(95% CI,93.9 至 98.3),特异性为 84.7%(95% CI,82.3 至 87.1)。
摘要 主题 本文回顾了用于治疗风湿病的药物对眼部的副作用。 临床相关性 风湿病是一种炎症性疾病,可能影响皮肤、血管、关节、肌肉和内脏器官。免疫抑制剂通常被用作治疗方法,虽然效果很好,但它们的副作用和毒性需要仔细监测。据报道,使用抗风湿药物会导致眼部并发症;然而,缺乏综合这些报告的文献。本文填补了这一空白,希望为风湿病学家和眼科医生在共同治疗风湿病患者时提供信息。 方法 从 2019 年 11 月到 9 月进行了 PubMed 文献检索,寻找使用 25 种风湿病药物的眼部副作用。 结果 本综述共纳入 111 篇论文。不良副作用分为非感染性原因和感染性原因。传统的抗风湿药物 (DMARD) 与瘙痒、刺激和结膜干燥有关,而生物 DMARDS 则报告有新发/复发性葡萄膜炎和脱髓鞘疾病。感染性副作用包括巨细胞病毒视网膜炎、弓形虫性脉络膜视网膜炎和眼内炎发作。还遇到了其他严重的副作用,并纳入了本综述。结论本文的目的是告知医疗保健提供者风湿病药物的潜在眼部副作用。鼓励医疗保健提供者更多地了解这些眼科并发症,并在他们的临床实践中找到相关性。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
除了持续的“全场”扫描之外,对于所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他替代方案无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。