第1章IBM Power S1012,S1014,S1022S,S1022和S1024概述。 。 。 。 。 。 。 。 。 1 1.1简介。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2 1.2系统概述。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。IBM Power S1012,S1014,S1022S,S1022和S1024概述。。。。。。。。。1 1.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.2系统概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2.1电源S1012服务器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2.2电源S1014服务器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.3 Power S1022S服务器。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 1.2.4 Power S1022服务器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 1.2.5 Power S1024服务器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。7 1.3操作环境。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.4物理包。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>11 1.4.1塔模型。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 1.4.2机架安装型号。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 1.5系统功能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.5.1 Power S1012服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.5.2 Power S1014服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 1.5.3 Power S1022S服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.5.4 Power S1022服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.5.5 Power S1024服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.6最小配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.7 PCIE适配器插槽。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 1.7.1 POCE S1012的PCIE适配器插槽。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 1.7.2 POCE S1014,S1022S,S1022和S1024的PCIE适配器插槽。。。。。。。。。。。。21 1.8操作系统支持。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.8.1 AIX操作系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.8.2 IBM和操作系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 1.8.3 Linux操作系统分布。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 1.8.4红色帽子OpenShift容器平台。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 1.8.5虚拟I/O服务器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 1.8.6标题为“系统支持”。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 1.8.7更新访问密钥。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 1.9硬件管理控制台概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 1.9.1 HMC 7063-CR2。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。35 1.9.1 HMC 7063-CR2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 1.9.2虚拟HMC。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37 1.9.3 BMC网络连接规则7063-CM2 HMC。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37 1.9.4高可容纳性HMC配置。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。38 1.9.5 HMC代码级别要求。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 1.9.6 HMC货币。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40
第1章IBM Power S1012,S1014,S1022S,S1022和S1024概述。 。 。 。 。 。 。 。 。 1 1.1简介。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2 1.2系统概述。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。IBM Power S1012,S1014,S1022S,S1022和S1024概述。。。。。。。。。1 1.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.2系统概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2.1电源S1012服务器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2.2电源S1014服务器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.2.3 Power S1022S服务器。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5 1.2.4 Power S1022服务器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 1.2.5 Power S1024服务器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。7 1.3操作环境。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.4物理包。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>11 1.4.1塔模型。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 1.4.2机架安装型号。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 1.5系统功能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.5.1 Power S1012服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.5.2 Power S1014服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 1.5.3 Power S1022S服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.5.4 Power S1022服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.5.5 Power S1024服务器功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.6最小配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.7 PCIE适配器插槽。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 1.7.1 POCE S1012的PCIE适配器插槽。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 1.7.2 POCE S1014,S1022S,S1022和S1024的PCIE适配器插槽。。。。。。。。。。。。21 1.8操作系统支持。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.8.1 AIX操作系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 1.8.2 IBM和操作系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 1.8.3 Linux操作系统分布。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 1.8.4红色帽子OpenShift容器平台。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 1.8.5虚拟I/O服务器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 1.8.6标题为“系统支持”。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 1.8.7更新访问密钥。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 1.9硬件管理控制台概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 1.9.1 HMC 7063-CR2。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。35 1.9.1 HMC 7063-CR2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 1.9.2虚拟HMC。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37 1.9.3 BMC网络连接规则7063-CM2 HMC。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>37 1.9.4高可容纳性HMC配置。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。38 1.9.5 HMC代码级别要求。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 1.9.6 HMC货币。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40
halvorødegårdteigen是后端开发人员,重点关注DevOps。他的学术背景具有稳固的学术背景,并拥有NTNU的控制论和机器人学硕士学位。通过他在Statens Vegvesen和Statnett的订婚,他表现出了熟练的熟练程度,并获得了跨学科自主团队的团队负责人,Scrum Master和Developer的经验,并具有敏捷的开发方法。Halvor致力于持续增长,并在几项认证和课程上投入了时间。他在数个测试区域获得了iSTQB认证,卡夫卡(Kafka)通过汇合处获得了认可,并在Java,Kotlin和AWS上完成了课程。拥有将近三年的开发人员经验,他现在担任Statnett的支持团队中的团队负责人和Java后端开发人员。在这里,他开发了应用程序和框架,以简化事件驱动系统的质量保证。Halvor在使用临时OpenShift环境的CI/CD管道中的自动集成和价值链测试的解决方案的开发中也具有不可或缺的作用。他以前曾在Statens Vegvesen的测试数据团队中担任开发人员,在那里他使用Python生成合成测试数据和Java来开发用于测试数据管理的应用程序。该项目进一步揭示了要求Halvor在分析和生成合成数据进行测试的中央客户服务中承担责任的需求和潜力。作为一个人,Halvor随和,渴望学习“一切都可以学习”。他表现出了承担责任和所有权所有权的能力,并致力于在事后获得他可以为之骄傲的工作。他与自己专业领域内外的最新技术保持最新状态,并且他的广泛经验使他能够与不同的个性合作,并从跨学科的角度为整体解决方案做出了贡献。
第 1 章 IBM Power Systems S922、S914 和 S924 概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 物理封装.................... ... 8 1.3.2 机架安装型号.................... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 磁盘和介质功能 . . . . . . . . . . . . . . . . . . 19 1.7 Power S922、Power S914 和 Power S924 服务器的 I/O 抽屉 . . . . . . . . . . . 33 1.7.1 PCIe Gen3 I/O 扩展抽屉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................38 1.9 IBM Capacity BackUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.9.3 Power S924 (9009-42G) IBM Capacity BackUp 产品 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 46. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 46. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 46
机器学习正在通过加速发现清洁能源和其他应用的新材料来改变材料科学领域。一些研究人员强调了机器学习对革命材料发现的潜力,引用了诸如使用机器学习算法来预测材料特性并优化合成条件的例子。研究人员一直在探索在各个领域的机器学习和人工智能的使用,包括材料科学,化学和计算机视觉。*在材料科学中,研究人员使用机器学习来加速具有特定特性的新材料。*在化学中,已经应用了机器学习来预测分子的特性而无需其晶体结构。*在计算机视觉中,研究人员开发了使用神经网络将PDF文档转换为其他格式的技术。具体研究包括: *关于使用复发的神经网络进行鲁棒性PDF文档转换的研究 *关于从化学计量的深度表示学习以预测材料属性的研究的研究 *开发用于对Corpora进行深入数据探索的平台,使用机器学习的使用来加速这些领域,并在这些领域中发现了各种领域,并在这些领域中发现了各种领域,并在这些领域中表现出了各种挑战,并在机器上进行了挑战。 研究。贝叶斯优化是一种用于有效搜索和采样的方法,已应用于药物发现,有机材料设计和虚拟筛选。(2018)。(2020)。近年来材料和化学发现领域已取得了重大进步,研究人员采用各种机器学习技术来加速大型化学空间的探索和优化。研究人员还探索了数据驱动方法(例如K-均值聚类)的使用,以优化批处理贝叶斯优化。此外,为分子图生成而开发了语法变化自动编码器和连接树变异自动编码器之类的技术。其他值得注意的进步包括开发用于直接闭环材料发现的算法,序列生成模型的客观增强生成对抗网络以及Mol-Cyclegan,Mol-Cyclegan是分子优化的生成模型。此外,研究人员还采用了机器学习技术来加速虚拟筛查,以发现适合于COVID-19的治疗剂。作品建立在现有文献的基础上,包括拉斯穆森(Rasmussen)关于机器学习的高斯流程的论文,罗杰斯(Rogers)的扩展连通性指纹,而语言模型上的棕色是很少的学习者。该领域继续随着机器学习和计算机科学的新技术和方法的整合而继续发展,从而为材料和化学发现提供了更高效,更可扩展的方法。研究人员在开发设计化学和分子的生成模型方面取得了重大进展。一种方法涉及使用变压器生成分子,该分子可用于诸如材料设计之类的应用。(2019)。J. Chem。 物理。J. Chem。物理。另一种方法使用基于注意力的卷积编码器来预测抗癌化合物的灵敏度。除了生成模型外,研究人员还开发了预测化学反应和从基于文本的化学反应表示的实验程序的方法。这些方法涉及使用基于变压器的模型并探索超图表以预测返回途径。此外,研究人员还创建了机器人平台,以通过AI规划告知的有机化合物以及可以自动执行化学反应的移动机器人的流动合成。这些进步有可能加速发现新的化学物质和材料。在其他领域,研究人员在使用神经序列到序列模型以及为高级光聚合物材料设计照片酸性发生器时,在预测复杂有机化学反应的结果方面取得了进展。总体而言,这些进步证明了机器学习和AI在化学领域的力量,从而使新化学品和材料更快,更有效地发现了。最近的光构成方面的突破导致了材料科学的显着进步,特别是在阳离子聚合中。Crivello and Lam(1979)的研究引入了Triarylsulfonium盐作为新的光构体,随后发现了日记二元盐(Crivello&Lam,1977)。这些创新为更有效,更精确的材料发展铺平了道路。然而,随着对光刻化学的监管审查,研究人员必须专注于科学驱动的创新。Tvermoes and Speed(2019)的研究强调了需要解决这些挑战的最先进解决方案的必要性。此外,对光酸发生器的环境影响的调查还揭示了与使用相关的潜在风险。理论模型,例如密度功能理论,已经有助于理解不同条件下材料的行为。Runge and Gross的作品(1984)为该领域奠定了基础,而Barca等人的最新研究。(2020)演示了先进的计算方法在材料科学上的应用。人工智能(AI)的整合正在改变研究人员对待物质发现的方式。AI驱动的工具来预测物理化学特性和环境命运终点。此外,Ristoski等人展示的是聚合物发现的专家AI。合成方法中的创新也具有先进的材料科学。钯催化的芳基磺硫化的芳基硫化。(2017),为材料开发开辟了新的途径。通过Huang等人的工作实现了芳基硫盐的氧化还原中性植物。材料科学与AI的交集正在驱动该领域的范式转移。随着研究人员继续利用机器学习和人工智能的力量,我们可以期望在材料开发和发现中取得进一步的突破。参考文献:Barca,G。M. J.等。物理。一般原子和分子电子结构系统的最新发展。152,154102(2020)。Carrete,J.,Li,W.,Mingo,N.,Wang,S。和Cortarolo,S。通过高通量材料建模,找到了前所未有的低热传导性半导体半导体。修订版x 4,011019(2014)。Crivello,J。V.和Lam,J。H. W.与三硫硫硫盐的光启动阳离子聚合。J. Polym。 SCI。 A:Polym。 化学。 17,977–999(1979)。 Crivello,J。V.和Lam,J。H. W.二二元盐。 新的用于阳离子聚合的光构体。 大分子10,1307–1315(1977)。 Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。J. Polym。SCI。 A:Polym。 化学。 17,977–999(1979)。 Crivello,J。V.和Lam,J。H. W.二二元盐。 新的用于阳离子聚合的光构体。 大分子10,1307–1315(1977)。 Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。SCI。A:Polym。化学。17,977–999(1979)。 Crivello,J。V.和Lam,J。H. W.二二元盐。 新的用于阳离子聚合的光构体。 大分子10,1307–1315(1977)。 Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。17,977–999(1979)。Crivello,J。V.和Lam,J。H. W.二二元盐。新的用于阳离子聚合的光构体。大分子10,1307–1315(1977)。Huang,C。等。 通过光激活芳基硫盐的氧化还原性含量。 org。 Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。Huang,C。等。通过光激活芳基硫盐的氧化还原性含量。org。Lett。 21,9688–9692(2019)。 Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。 ACS Catal。 8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。Lett。21,9688–9692(2019)。Minami,H.,Otsuka,S.,Nogi,K。,&Yorimitsu,H。用Diborons的芳基磺硫酸硫化硫化的含量。ACS Catal。8,579–583(2017)。 Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J. Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。8,579–583(2017)。Mansouri,K.,Grulke,C.M.,Judson,R.S。和Williams,A。J.Opera模型,用于预测理化特性和环境命运终点。 J.化学形式学10,10(2018)。 Ristoski,P。等。 专家AI用于聚合物发现。 in:proc。 第29届ACM信息与知识管理国际会议(ACM,2020年)。 Runge,E。和Gross,E。K.时间相关系统的密度官能理论。 物理。 修订版 Lett。 52,997(1984)。Opera模型,用于预测理化特性和环境命运终点。J.化学形式学10,10(2018)。Ristoski,P。等。专家AI用于聚合物发现。in:proc。第29届ACM信息与知识管理国际会议(ACM,2020年)。Runge,E。和Gross,E。K.时间相关系统的密度官能理论。物理。修订版Lett。 52,997(1984)。Lett。52,997(1984)。52,997(1984)。Shipley,G。和Dumpleton,G。Openshift for Developers:不耐烦的初学者指南(O'Reilly Media,Inc.,2016年)。探索了材料科学中的软机器人假肢和人工智能应用。讨论了AI技术的集成,突出了其潜在的好处和用途。
处理过时的软件已成为包括开源行业在内的各个行业的紧迫问题。本期为软件工程研究人员提供了机会,有机会适应传统的程序分析技术,以应对重构和现代化挑战。生成AI的进步已经为代码生成,翻译和错误修复以及其他任务开辟了新的途径。公司渴望探索可扩展的解决方案,以进行自动测试,重构和代码生成。本教程旨在提供旧软件现代化的概述,并在AI辅助软件和生成AI的兴起中强调了其意义。它将讨论由整体遗产代码和系统引起的行业挑战,引入建筑范式以现代化的老化软件,并突出需要注意的研究和工程问题。Daniel Thul等人,Xue Han等人,Daiki Kimura等人,Oytun Ulutan等人和Shivali Agarwal等人的研究论文。展示了解决旧软件现代化的重要性。这项工作有可能推动软件工程的创新,使IBM这样的公司能够开发最先进的解决方案。IBM研究在过去一年中在AI,量子计算,半导体和基本研究方面取得了长足的进步。该组织在全球12位实验室中的3,000名研究人员推动了科学领域的界限,并设想了以前似乎不可能的计算和扩展思想中的新可能性。我们的开发路线图将使我们走向这一未来。在过去的一年中,IBM研究在革新企业内的AI能力方面发挥了关键作用。就像AI在短时间内在我们的日常生活中深深地根深蒂固一样,世界上大多数有价值的业务数据仍然锁定在无法访问的格式中,例如PDF和电子表格。在2024年,IBM Research领导了该公司主要AI发行的指控,该公司旨在满足拥有数百万最终用户的企业。亮点之一是在五月的Think上推出了TruxStlab,这是一个开源项目,通过启用新知识和技能的协作添加来简化微调LLM。IBM Research和Red Hat之间的这种合作导致了Red Hat Enterprise Linux AI的功能强大的工具。TenchERTLAB脱颖而出,因为其能够允许全球社区创建和合并更改LLM的能力,而无需从头开始重新培训整个模型。此功能使全球人们更容易找到使用LLMS解决复杂问题的创新方法。此外,IBM Research还使用TerchandLab改善了其开源花岗岩模型,该模型随后于10月发布。在IBM Research的数据和模型工厂中设计和培训了新的花岗岩8B和2B模型。这些企业级模型的执行方式类似于较大的基础模型,但对于诸如抹布,分类,摘要,实体提取和工具使用的企业至关重要的任务成本的一小部分。在12月,IBM发布了其花岗岩3.1型号,每种型号的上下文长度为128K。经过超过12万亿代币的高质量数据培训,这些模型对其数据源具有完全透明的开源。花岗岩3.1 8b指示模型显着提高了其前身的性能改进,并在其同行中占据了拥抱面孔OpenLLM排行榜基准的平均得分之一。此外,IBM发布了一个新的嵌入模型系列,这些模型提供了12种语言的多语言支持,类似于它们的生成性。作为较早的Granite 3.0发射的一部分,Granite Guardian也是开源的。这使开发人员可以通过检查用户提示和LLM的响应来实施安全护栏,以了解社交偏见,仇恨言论,毒性,亵渎,暴力等风险。我们继续使用AI模型来推动界限,尤其是与抹布技术配对时。这种组合使我们能够评估背景相关性,回答相关性和扎根。我们的最新花岗岩3.1型号是8B强大的巨头,可提供无与伦比的风险和损害检测功能。我们还升级了我们的花岗岩时间序列模型,该模型以十倍的利润优于更大的模型。这些进步对于试图根据历史数据准确预测未来事件的企业尤为重要。与传统的LLM不同,我们的花岗岩TTM(TinyTimemixers)系列提供紧凑而高性能的时间序列型号,现在可以在Beta版本的Watsonx.ai的时间表预测API和SDK的Beta版本中提供。这个新的8B代码模型还具有对代理功能的支持。我们相信,我们的开源社区在这些模型中看到了价值,迄今为止,拥抱面孔的下载量超过500万。我们的下一代代码助理,由花岗岩代码模型提供支持,为C,C ++,GO,Java和Python等语言提供通用编码帮助。除了我们的内部软件开发管道改进外,在某些情况下增强了90%的增长,Granite代码模型现在还通过Instana,Watsonx Struckestrate和Maximo等产品中的产品,业务和行业4.0自动化为新的用例,为新的用例提供了动力。我们的花岗岩型号现在可以在包括Ollama,LM Studio,AWS,Nvidia,Google Vertex,Samsung等的各种平台上使用。建立在花岗岩3系的成功基础上,我们正在努力实现一个未来,AI代理可以通过称为Bee的开源框架可以轻松地解决业务需求。这使代理商可以快速开发业务应用程序。与美国国家航空航天局合作开发的气候和天气模式,用于跟踪重大的环境问题,例如西班牙的洪水破坏,亚马逊森林砍伐以及美国城市的热岛。我们很自豪地庆祝由IBM和META共同创立的AI联盟一年,旨在推动开放和负责的AI开发。该计划已发展为23个国家 /地区的140名成员,为负责任的模型,AI硬件和安全计划组成工作组。随着对AI的需求的增长,很明显,传统的CPU和GPU正在努力与这些模型的复杂性保持同步。我们需要创建从一开始设计的新设备,以有效地处理AI需求。IBM在半导体和基础设施中揭示了2024年在半导体和基础设施研究团队中发生的一些重大突破,重点是规模。8月,IBM揭开了Spyre,这是一种新的AI ACELERATOR芯片,用于子孙后代的Z和Power Systems,灵感来自AIU原型设计和Telum Chip的工作。这一突破是在意识到AI工作流程需要极低的AI推断后的突破。spyre具有32个单独的加速器芯,并包含使用5 nm节点工艺技术生产的14英里电线连接的256亿晶体管。芯片设计为聚集在一起,为单个IBM Z系统添加了更多的加速器核。与Spyre一起,企业可以在Z上部署尖端的AI软件,同时受益于IBM Z的安全性和可靠性。IBMResearch也一直在探索更有效地服务模型的方法。去年,该团队推出了其脑启发的AIU Northpole芯片,该芯片将记忆和加工单元共同取消,拆除了Von Neumann瓶颈。今年,在Northpole的硬件研究人员与AI研究人员之间的合作中,该团队使用Northpole用于生成模型创建了一个新的研究系统。该团队的潜伏期低于1毫秒的延迟,比下一个节能的GPU快了近47倍,而能量却减少了近73倍。另一个重大突破是在共包装光学领域的。此设备可以在硅芯片边缘的高密度光纤束,从而可以通过聚合物纤维进行直接通信。IBM Research Semiconductors部门中的一个团队生产了世界上第一个成功的聚合物光学波导,将光学的带宽带到了芯片边缘。该团队证明了光通道50微米的音高的可行性,这比以前的设计尺寸减少了80%。IBM研究人员在芯片设计和制造方面取得了重大突破。 他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。 这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。 此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。 他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。 这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。 团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。 IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。 这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。IBM研究人员在芯片设计和制造方面取得了重大突破。他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。例如,IBM Spyre已经可用,将是下一代IBM Power 11的组成部分。AIU Northpole和共包装的光学设备在加拿大Bromont的IBM设施进行了测试和硬化。IBM量子通过整合量子和经典系统来解决复杂问题,从而加速其对混合计算的愿景。今年,该公司在推进其可扩展故障量量子计算机的路线图方面取得了长足的进步。在量子开发人员会议上,IBM展示了其进度,包括从高达5,000台门的运营中获得了苍鹭量子电路的精确结果。揭幕了一种新的,改进的苍鹭芯片,拥有156吨和出色的性能,错误率下降到8x10^-4。此外,IBM在创新方面取得了重大进步,包括使用Crossbill和L-COUPLER的M耦合器与火烈鸟的开发。这些突破使量子计算机更接近可扩展性和容忍性。此外,Qiskit V1.0是作为稳定版本发布的,巩固了其作为世界上最出色的量子软件开发套件的位置。此版本提供了改进的稳定性,并为Qiskit的60万开发人员提供了更长的支持周期。此外,还编译了一个名为Benchpress的基准集合,以准确演示Qiskit的性能。在针对其他量子软件(包括TKET,BQSKIT和CIRQ)的基准测试测试中,Qiskit在性能方面出现了明确的赢家,完成了比任何其他量子SDK的测试。IBM对创新的承诺可以追溯到80年前的成立。平均而言,在移动电路时,Qiskit的速度比TKET少54%。我们的软件工具集<div> Qiskit已经超越了性能SDK,以支持运行实用程序尺度量子工作负载的整个过程。这包括编写代码,后处理结果以及两者之间的所有内容。该工具集现在涵盖执行大规模工作负载所需的开源SDK和软件中间件。Qiskit Transpiler服务,更新的Qiskit Runtime Service,QISKIT AI Code Assistan Service,Qiskit Serverless和Qiskit功能等新功能使用户能够在更高的抽象级别访问高性能的量子硬件和软件。Qiskit功能,特别是将量子计算带给更广泛的受众群体的潜力。这是一项编程服务,允许用户在导入功能目录并传递其API令牌后,在IBM量子处理器和IBM Cloud上运行工作负载。该服务应用错误抑制和缓解措施,然后返回结果。通过结合软件和硬件突破,我们制作了以量子为中心的超级计算的第一个真实演示。我们与Riken合作发表了一篇论文,将此范式定义为超级计算,可以优化跨量子计算机和高级经典计算簇的工作。在我们的实验中,我们使用了多达6,400个fugaku超级计算机的节点,以帮助IBM Heron QPU模拟分子氮和铁硫簇。我们有信心,如果我们与古典HPC社区合作,我们可以在未来两年内实现量子优势。由于以量子为中心的超级计算出现,我们设想在一些最难的计算任务中协助经典计算机(反之亦然)的量子计算机。当前的加密方法取决于计算机将大数字分为主要因素的困难,随着数字的增长,这变得越来越具有挑战性。计算机科学家认为,研究人员已经证明,一台复杂的量子计算机可以通过应用Shor的算法在几个小时内破解RSA-2048加密,这对于计算机对于能够将大于2048位的数字的计算值至关重要。为了解决这一问题,IBM Research开发了三种新的数字签名算法-ML-KEM,ML-DSA和SLH-DSA,它们已被NIST接受竞争。为了确保平稳过渡到后量子后时代,IBM量子安全团队创建了一个用于网络弹性的路线图。这涉及了解组织的加密格局,确定需要更换的领域以及分析依赖性。企业可以使用诸如IBM量子安全探险家之类的工具来发现加密文物,生成密码材料清单(CBOM)并分析相关漏洞。IBM还为几项国家级计划做出了贡献,包括日本的Rapidus项目,该计划旨在使用芯片和高级包装以及AI驱动的Fab Automation开发2 NM芯片。此外,IBM与几个国家合作,以帮助他们确保其计算未来。在瑞士,IBM与Phoenix Technologies合作,在其位置安装了端到端的云AI超级计算机。该系统能够从数十个gpus扩展到数十个GPU,并具有IBM突破,例如基于IBM存储量表的灵活的基于RDMA的网络和高性能存储系统。使用OpenShift容器平台和OpenShift AI构建了云本地AI平台,可根据需要提供对WATSONX.AI的访问。IBM设置为全球主权AI Cloud Solutions的动力,从Kvant AI开始,该解决方案旨在提供特定于行业的AI应用程序。该公司还将通过投资其Bromont设施来加强与加拿大和魁北克政府的合作伙伴关系,从而巩固北美芯片供应链的未来。此外,IBM半导体研究导致了纳米片技术和2 nm节点等突破,并且新的NSTC EUV加速器将位于Albany Nanotech综合体。IBM还通过开设其在欧洲的第一个量子数据中心并与Riken合作安装IBM量子系统两个,从而在全球扩展量子计算。该公司还将IBM系统带到韩国和法国,同时与西班牙,沙特阿拉伯和肯尼亚等政府合作开发特定语言的AI模型并监视造林工作。托马斯·沃森(Thomas Watson)认为,从制表机,尺度和打孔时钟的早期,投资研究的价值。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。 这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM研究:八十年前的科学突破的遗产,哥伦比亚大学教授华莱士·埃克特(Wallace Eckert)领导了沃森科学计算实验室IBM Research成为前身的建立。在1956年,IBM建立了一个专门的研究部门,到本世纪末,他们需要更多的空间来探索迅速发展的计算世界。我们通过在我们的思想实验室中构建创新的解决方案来启动我们的旅程,以塑造计算的未来。在这里,研究人员与来自不同背景的专业人员合作,以解决看似不可能的项目。我们的内部工具(如花岗岩模型)被用来增强我们的产品,而代理框架为Qiskit供电代理。最近的合作导致了加速的发现,回应了托马斯·沃森(Thomas Watson)80年前的开拓精神。我们应对未来80年的挑战时,下一章的创新就在未来。